

python-ldap

What is python-ldap?

python-ldap provides an object-oriented API to access LDAP [https://en.wikipedia.org/wiki/Ldap]
directory servers from Python [https://www.python.org/] programs.

For LDAP operations the module wraps OpenLDAP [https://www.openldap.org/]’s
client library, libldap.

Additionally, the package contains modules for other LDAP-related stuff:

	LDIF [https://en.wikipedia.org/wiki/LDIF] parsing and generation

	LDAP URLs

	LDAPv3 subschema

Get it!

Installation instructions are available for
several platforms.

Source code can be obtained using Git:

git clone https://github.com/python-ldap/python-ldap

Mailing list

Discussion about the use and future of python-ldap occurs in
the python-ldap@python.org mailing list.

You can subscribe or unsubscribe [https://mail.python.org/mailman/listinfo/python-ldap] to this list or browse the list archive [https://mail.python.org/pipermail/python-ldap/].

Documentation

The documentation for python-ldap 3.x is hosted at Read the Docs [https://python-ldap.readthedocs.io/en/latest/].

You can switch between versions of the library, or download PDF or HTML
versions for offline use, using the sidebar on the right.

Documentation for some older versions is available for download at the
GitHub release page [https://github.com/python-ldap/python-ldap/releases].

Contents

	Installing python-ldap
	Installing from PyPI

	Pre-built Binaries

	Installing from Source

	Build prerequisites

	setup.cfg

	Bytes/text management
	Historical note

	python-ldap Reference Documentation
	ldap LDAP library interface module

	ldap.asyncsearch Stream-processing of large search results

	ldap.controls High-level access to LDAPv3 extended controls

	ldap.dn LDAP Distinguished Name handling

	ldap.extop High-level access to LDAPv3 extended operations

	ldap.filter LDAP filter handling

	ldap.modlist Generate modify lists

	ldap.resiter Generator for stream-processing of large search results

	ldap.schema Handling LDAPv3 schema

	ldap.syncrepl Implementation of a syncrepl consumer

	ldap.sasl SASL Authentication Methods

	ldif LDIF parser and generator

	ldapurl LDAP URL handling

	slapdtest Spawning test instances of OpenLDAP’s slapd server

	Third-party documentation
	Python LDAP Applications articles by Matt Butcher

	LDAP Programming in Python

	RFC 1823

	LDAPEXT draft

	OpenLDAP

	VSLDAP

	Contributing to python-ldap
	Communication

	Contributing code

	Additional tests and scripts

	Instructions for core committers

	Instructions for release managers

	python-ldap FAQ
	Project

	Usage

	Installing

	Historic

Indices and tables

	Index

	Module Index

	Search Page

Installing python-ldap

Installing from PyPI

The preferred point for downloading the “official” source distribution
is the PyPI repository [https://pypi.org/project/python-ldap/] which supports installing via pip [https://pip.pypa.io/en/stable/].
For example:

$ python -m pip install python-ldap

For installing from PyPI, you will need the same Build prerequisites
as when installing from source.

We do not currently provide pre-built packages (wheels).

Furthermore, python-ldap requires the modules pyasn1 [https://pypi.org/project/pyasn1/] and pyasn1-modules [https://pypi.org/project/pyasn1-modules/].
pip will install these automatically.

Pre-built Binaries

Because distributions seem to be all over the place, this page
tries to list all the current ones we know of.

Note that the python-ldap team is not responsible for the binary packages
except the sources you can grab from the PyPI page. Also note that binary
packages are most times not up to date. If you experience troubles
with a binary package, it would be nice if you try to build a recent version
of python-ldap before submitting a bug report to make sure you did not
hit a problem already fixed in recent releases.

openSUSE Linux [https://www.opensuse.org/]

Ships with python-ldap and there’s an additional
download repository [https://download.opensuse.org/repositories/devel:/languages:/python/]
which contains builds of latest releases
(see also OBS package [https://build.opensuse.org/package/show/devel:languages:python/python-ldap]).

Debian Linux [https://www.debian.org]

Have a look into the
Debian Package Tracker [https://tracker.debian.org/pkg/python-ldap]
to get up to date information which versions are available.

Windows

Unofficial packages for Windows are available on
Christoph Gohlke’s page [https://www.lfd.uci.edu/~gohlke/pythonlibs/].

FreeBSD [https://www.freebsd.org/]

The CVS repository of FreeBSD contains the package
py-ldap [https://svnweb.freebsd.org/ports/head/net/py-ldap/]

macOS

You can install directly with pip:

$ xcode-select --install
$ pip install python-ldap \
 --global-option=build_ext \
 --global-option="-I$(xcrun --show-sdk-path)/usr/include/sasl"

Installing from Source

python-ldap is built and installed using the Python setuptools.
From a source repository:

$ python -m pip install setuptools
$ python setup.py install

If you have more than one Python interpreter installed locally, you should
use the same one you plan to use python-ldap with.

Further instructions can be found in Setuptools documentation [https://docs.python.org/3/distributing/index.html#distributing-index].

Build prerequisites

The following software packages are required to be installed
on the local system when building python-ldap:

	Python [https://www.python.org/] including its development files

	C compiler corresponding to your Python version (on Linux, it is usually gcc)

	OpenLDAP [https://www.openldap.org/] client libs version 2.4.11 or later;
it is not possible and not supported to build with prior versions.

	OpenSSL [https://www.openssl.org/] (optional)

	Cyrus SASL [https://www.cyrusimap.org/sasl/] (optional)

	Kerberos libraries, MIT or Heimdal (optional)

Alpine

Packages for building:

apk add build-base openldap-dev python3-dev

CentOS

Packages for building:

yum groupinstall "Development tools"
yum install openldap-devel python-devel

Debian

Packages for building and testing:

apt-get install build-essential python3-dev \
 libldap2-dev libsasl2-dev slapd ldap-utils tox \
 lcov valgrind

Note

On older releases tox was called python-tox.

Fedora

Packages for building and testing:

dnf install "@C Development Tools and Libraries" openldap-devel \
 python3-devel python3-tox \
 lcov clang-analyzer valgrind

Note

openldap-2.4.45-2 (Fedora 26), openldap-2.4.45-4 (Fedora 27) or
newer are required.

setup.cfg

The file setup.cfg allows to set some build and installation parameters for
reflecting the local installation of required software packages. Only section
[_ldap] is described here. More information about other sections can be
found in Setuptools documentation [https://docs.python.org/3/distributing/index.html#distributing-index].

	
library_dirs

	Specifies in which directories to search for required libraries.

	
include_dirs

	Specifies in which directories to search for include files of required libraries.

	
libs

	A space-separated list of library names to link to (see Libraries used).

	
extra_compile_args

	Compiler options.

	
extra_objects

	

Libraries used

	
ldap

	

	
ldap_r

	The LDAP protocol library of OpenLDAP. ldap_r is the reentrant version
and should be preferred.

	
lber

	The BER encoder/decoder library of OpenLDAP.

	
sasl2

	The Cyrus-SASL library (optional)

	
ssl

	The SSL/TLS library of OpenSSL (optional)

	
crypto

	The basic cryptographic library of OpenSSL (optional)

Example

The following example is for a full-featured build (including SSL and SASL support)
of python-ldap with OpenLDAP installed in a different prefix directory
(here /opt/openldap-2.4) and SASL header files found in /usr/include/sasl.
Debugging symbols are preserved with compile option -g.

[_ldap]
library_dirs = /opt/openldap-2.4/lib
include_dirs = /opt/openldap-2.4/include /usr/include/sasl

extra_compile_args = -g
extra_objects =

libs = ldap_r lber sasl2 ssl crypto

Bytes/text management

The LDAP protocol states that some fields (distinguished names, relative
distinguished names, attribute names, queries) be encoded in UTF-8.
In python-ldap, these are represented as text (str on Python 3).

Attribute values, on the other hand, MAY
contain any type of data, including text.
To know what type of data is represented, python-ldap would need access to the
schema, which is not always available (nor always correct).
Thus, attribute values are always treated as bytes.
Encoding/decoding to other formats – text, images, etc. – is left to the caller.

Historical note

Python 3 introduced a hard distinction between text (str) – sequences of
characters (formally, Unicode codepoints) – and bytes – sequences of
8-bit values used to encode any kind of data for storage or transmission.

Python 2 had the same distinction between str (bytes) and
unicode (text).
However, values could be implicitly converted between these types as needed,
e.g. when comparing or writing to disk or the network.
The implicit encoding and decoding can be a source of subtle bugs when not
designed and tested adequately.

In python-ldap 2.x (for Python 2), bytes were used for all fields,
including those guaranteed to be text.

From version 3.0 to 3.3, python-ldap uses text where appropriate.
On Python 2, special bytes_mode and bytes_strictness settings
influenced how text was handled.

From version 3.3 on, only Python 3 is supported. The “bytes mode” settings
are deprecated and do nothing.

python-ldap Reference Documentation

This document describes the package python-ldap with its various modules.

Depending on what you want to do this manual assumes basic to expert
knowledge about the Python language and the LDAP standard (LDAPv3).

	ldap LDAP library interface module
	Functions

	Constants
	General

	Options

	DN format flags

	Exceptions

	Warnings

	LDAPObject classes
	Arguments for LDAPv3 controls

	Sending LDAP requests

	Connection-specific LDAP options

	Object attributes

	Example

	ldap.asyncsearch Stream-processing of large search results
	Classes

	Examples
	Using ldap.asyncsearch.List

	Using ldap.asyncsearch.LDIFWriter

	ldap.controls High-level access to LDAPv3 extended controls
	Variables

	Classes

	Functions

	Sub-modules
	ldap.controls.simple Very simple controls

	ldap.controls.libldap Various controls implemented in OpenLDAP libs

	ldap.controls.psearch LDAP Persistent Search

	ldap.controls.sessiontrack Session tracking control

	ldap.controls.readentry Read entry control

	ldap.controls.ppolicy Password Policy Control

	ldap.dn LDAP Distinguished Name handling
	Examples

	ldap.extop High-level access to LDAPv3 extended operations
	Classes

	ldap.extop.dds Classes for Dynamic Entries extended operations

	ldap.filter LDAP filter handling

	ldap.modlist Generate modify lists

	ldap.resiter Generator for stream-processing of large search results
	Examples
	Using ldap.resiter.ResultProcessor

	ldap.schema Handling LDAPv3 schema
	ldap.schema.subentry Processing LDAPv3 subschema subentry
	Functions

	Classes

	ldap.schema.models Schema elements

	Examples for ldap.schema

	ldap.syncrepl Implementation of a syncrepl consumer
	Classes

	ldap.sasl SASL Authentication Methods
	Constants

	Classes
	Examples for ldap.sasl

	ldif LDIF parser and generator
	Functions

	Classes

	Example

	ldapurl LDAP URL handling
	Constants

	Functions

	Classes
	LDAP URLs

	LDAP URL extensions

	Example

	slapdtest Spawning test instances of OpenLDAP’s slapd server
	Functions

	Classes

ldap LDAP library interface module

This module provides access to the LDAP (Lightweight Directory Access Protocol)
C API implemented in OpenLDAP. It is similar to the C API, with
the notable differences that lists are manipulated via Python list operations
and errors appear as exceptions.

See also

For more detailed information on the C interface, please see the (expired)
draft-ietf-ldapext-ldap-c-api [https://tools.ietf.org/html/draft-ietf-ldapext-ldap-c-api]

This documentation is current for the Python LDAP module, version
3.4.2. Source and binaries are available from
https://www.python-ldap.org/.

Functions

This module defines the following functions:

	
ldap.initialize(uri[, trace_level=0[, trace_file=sys.stdout[, trace_stack_limit=None[, fileno=None]]]]) → LDAPObject object

	Initializes a new connection object for accessing the given LDAP server,
and return an LDAPObject used to perform operations
on that server.

The uri parameter may be a comma- or whitespace-separated list of URIs
containing only the schema, the host, and the port fields. Note that
when using multiple URIs you cannot determine to which URI your client
gets connected.

If fileno parameter is given then the file descriptor will be used to
connect to an LDAP server. The fileno must either be a socket file
descriptor as int [https://docs.python.org/3/library/functions.html#int] or a file-like object with a fileno() method
that returns a socket file descriptor. The socket file descriptor must
already be connected. LDAPObject does not take
ownership of the file descriptor. It must be kept open during operations
and explicitly closed after the LDAPObject is
unbound. The internal connection type is determined from the URI, TCP
for ldap:// / ldaps://, IPC (AF_UNIX) for ldapi://.
The parameter is not available on macOS when python-ldap is compiled with system
libldap, see INIT_FD_AVAIL.

Note that internally the OpenLDAP function
ldap_initialize(3) [https://www.openldap.org/software/man.cgi?query=ldap_init&sektion=3]
is called which just initializes the LDAP connection struct in the C API
- nothing else. Therefore the first call to an operation method (bind,
search etc.) then really opens the connection (lazy connect). Before
that nothing is sent on the wire. The error handling in the calling
application has to correctly handle this behaviour.

Three optional arguments are for generating debug log information:
trace_level specifies the amount of information being logged,
trace_file specifies a file-like object as target of the debug log and
trace_stack_limit specifies the stack limit of tracebacks in debug log.

Possible values for trace_level are
0 for no logging,
1 for only logging the method calls with arguments,
2 for logging the method calls with arguments and the complete results and
9 for also logging the traceback of method calls.

This function is a thin wrapper around instantiating
LDAPObject.
Any additional keyword arguments are passed to LDAPObject.
It is also fine to instantiate a LDAPObject (or a subclass) directly.

The function additionally takes bytes_mode and bytes_strictness keyword
arguments, which are deprecated and ignored. See Bytes/text management for
details.

See also

RFC 4516 [https://tools.ietf.org/html/rfc4516.html] - Lightweight Directory Access Protocol (LDAP): Uniform Resource Locator

New in version 3.3: The fileno argument was added.

Deprecated since version 3.4: bytes_mode and bytes_strictness arguments are deprecated.

	
ldap.get_option(option) → int|string

	This function returns the value of the global option specified by option.

	
ldap.set_option(option, invalue) → None

	This function sets the value of the global option specified by option to
invalue.

Note

Most global settings do not affect existing LDAPObject
connections. Applications should call set_option() before
they establish connections with initialize().

Changed in version 3.1: The deprecated functions ldap.init() and ldap.open() were removed.

Constants

The module defines various constants. Note that some constants depend
on the build options and which underlying libs were used or even on
the version of the libs. So before using those constants the application has
to explicitly check whether they are available.

General

	
ldap.PORT

	The assigned TCP port number (389) that LDAP servers listen on.

	
ldap.SASL_AVAIL

	Integer where a non-zero value indicates that python-ldap was built with
support for SASL (Cyrus-SASL).

	
ldap.TLS_AVAIL

	Integer where a non-zero value indicates that python-ldap was built with
support for SSL/TLS (OpenSSL or similar libs).

	
ldap.INIT_FD_AVAIL

	Integer where a non-zero value indicates that python-ldap supports
initialize() from a file descriptor. The feature is generally
available except on macOS when python-ldap is compiled with system libldap.

Options

See also

ldap.conf(5) and ldap_get_option(3)

For use with functions set_option() and get_option() and
methods LDAPObject.set_option() and LDAPObject.get_option()
the following option identifiers are defined as constants:

	
ldap.OPT_API_FEATURE_INFO

	

	
ldap.OPT_API_INFO

	

	
ldap.OPT_CLIENT_CONTROLS

	

	
ldap.OPT_DEBUG_LEVEL

	Sets the debug level within the underlying OpenLDAP C lib (libldap).
libldap sends the log messages to stderr.

	
ldap.OPT_DEFBASE

	

	
ldap.OPT_DEREF

	Specifies how alias dereferencing is done within the underlying LDAP C lib.

	
ldap.OPT_ERROR_STRING

	

	
ldap.OPT_DIAGNOSTIC_MESSAGE

	

	
ldap.OPT_HOST_NAME

	

	
ldap.OPT_MATCHED_DN

	

	
ldap.OPT_NETWORK_TIMEOUT

	
Changed in version 3.0: A timeout of -1 or None resets timeout to infinity.

	
ldap.OPT_PROTOCOL_VERSION

	Sets the LDAP protocol version used for a connection. This is mapped to
object attribute ldap.LDAPObject.protocol_version

	
ldap.OPT_REFERRALS

	int specifying whether referrals should be automatically chased within
the underlying LDAP C lib.

	
ldap.OPT_REFHOPLIMIT

	

	
ldap.OPT_RESTART

	

	
ldap.OPT_SERVER_CONTROLS

	

	
ldap.OPT_SIZELIMIT

	

	
ldap.OPT_SUCCESS

	

	
ldap.OPT_TIMELIMIT

	

	
ldap.OPT_TIMEOUT

	
Changed in version 3.0: A timeout of -1 or None resets timeout to infinity.

	
ldap.OPT_URI

	

SASL options

Unlike most other options, SASL options must be set on an
LDAPObject instance.

	
ldap.OPT_X_SASL_AUTHCID

	

	
ldap.OPT_X_SASL_AUTHZID

	

	
ldap.OPT_X_SASL_MECH

	

	
ldap.OPT_X_SASL_NOCANON

	If set to zero, SASL host name canonicalization is disabled.

	
ldap.OPT_X_SASL_REALM

	

	
ldap.OPT_X_SASL_SECPROPS

	

	
ldap.OPT_X_SASL_SSF

	

	
ldap.OPT_X_SASL_SSF_EXTERNAL

	

	
ldap.OPT_X_SASL_SSF_MAX

	

	
ldap.OPT_X_SASL_SSF_MIN

	

TLS options

Warning

libldap does not materialize all TLS settings immediately. You must use
OPT_X_TLS_NEWCTX with value 0 to instruct libldap to
apply pending TLS settings and create a new internal TLS context:

conn = ldap.initialize("ldap://ldap.example")
conn.set_option(ldap.OPT_X_TLS_CACERTFILE, '/path/to/ca.pem')
conn.set_option(ldap.OPT_X_TLS_NEWCTX, 0)
conn.start_tls_s()
conn.simple_bind_s(dn, password)

	
ldap.OPT_X_TLS_NEWCTX

	set and apply TLS settings to internal TLS context. Value 0 creates
a new client-side context.

	
ldap.OPT_X_TLS_PACKAGE

	Get TLS implementation, known values are

	GnuTLS

	MozNSS (Mozilla NSS)

	OpenSSL

	
ldap.OPT_X_TLS_CACERTDIR

	get/set path to directory with CA certs

	
ldap.OPT_X_TLS_CACERTFILE

	get/set path to PEM file with CA certs

	
ldap.OPT_X_TLS_CERTFILE

	get/set path to file with PEM encoded cert for client cert authentication,
requires OPT_X_TLS_KEYFILE.

	
ldap.OPT_X_TLS_KEYFILE

	get/set path to file with PEM encoded key for client cert authentication,
requires OPT_X_TLS_CERTFILE.

	
ldap.OPT_X_TLS_CRLCHECK

	get/set certificate revocation list (CRL) check mode. CRL validation
requires OPT_X_TLS_CRLFILE.

	OPT_X_TLS_CRL_NONE

	Don’t perform CRL checks

	OPT_X_TLS_CRL_PEER

	Perform CRL check for peer’s end entity cert.

	OPT_X_TLS_CRL_ALL

	Perform CRL checks for the whole cert chain

	
ldap.OPT_X_TLS_CRLFILE

	get/set path to CRL file

	
ldap.OPT_X_TLS_CRL_ALL

	value for OPT_X_TLS_CRLCHECK

	
ldap.OPT_X_TLS_CRL_NONE

	value for OPT_X_TLS_CRLCHECK

	
ldap.OPT_X_TLS_CRL_PEER

	value for OPT_X_TLS_CRLCHECK

	
ldap.OPT_X_TLS_REQUIRE_CERT

	get/set validation strategy for server cert.

	OPT_X_TLS_NEVER

	Don’t check server cert and host name

	OPT_X_TLS_ALLOW

	Used internally by slapd server.

	OPT_X_TLS_DEMAND

	Validate peer cert chain and host name

	OPT_X_TLS_HARD

	Same as OPT_X_TLS_DEMAND

	
ldap.OPT_X_TLS_REQUIRE_SAN

	get/set how OpenLDAP validates subject alternative name extension,
available in OpenLDAP 2.4.52 and newer.

	OPT_X_TLS_NEVER

	Don’t check SAN

	OPT_X_TLS_ALLOW

	Check SAN first, always fall back to subject common name (default)

	OPT_X_TLS_TRY

	Check SAN first, only fall back to subject common name, when no SAN
extension is present (RFC 6125 [https://tools.ietf.org/html/rfc6125.html] conform validation)

	OPT_X_TLS_DEMAND

	Validate peer cert chain and host name

	OPT_X_TLS_HARD

	Require SAN, don’t fall back to subject common name

New in version 3.4.0.

	
ldap.OPT_X_TLS_ALLOW

	Value for OPT_X_TLS_REQUIRE_CERT
and OPT_X_TLS_REQUIRE_SAN

	
ldap.OPT_X_TLS_DEMAND

	Value for OPT_X_TLS_REQUIRE_CERT
and OPT_X_TLS_REQUIRE_SAN

	
ldap.OPT_X_TLS_HARD

	Value for OPT_X_TLS_REQUIRE_CERT
and OPT_X_TLS_REQUIRE_SAN

	
ldap.OPT_X_TLS_NEVER

	Value for OPT_X_TLS_REQUIRE_CERT
and OPT_X_TLS_REQUIRE_SAN

	
ldap.OPT_X_TLS_TRY

	Value for OPT_X_TLS_REQUIRE_CERT

Deprecated since version 3.3.0: This value is only used by slapd server internally. It will be removed
in the future.

	
ldap.OPT_X_TLS_CIPHER

	get cipher suite name from TLS session

	
ldap.OPT_X_TLS_CIPHER_SUITE

	get/set allowed cipher suites

	
ldap.OPT_X_TLS_PEERCERT

	Get peer’s certificate as binary ASN.1 data structure (DER)

New in version 3.4.1.

Note

The option leaks memory with OpenLDAP < 2.5.8.

	
ldap.OPT_X_TLS_PROTOCOL_MIN

	get/set minimum protocol version (wire protocol version as int)

	
ldap.OPT_X_TLS_PROTOCOL_MAX

	get/set maximum protocol version (wire protocol version as int),
available in OpenLDAP 2.5 and newer.

New in version 3.4.1.

	
ldap.OPT_X_TLS_PROTOCOL_SSL3

	Value for OPT_X_TLS_PROTOCOL_MIN and
OPT_X_TLS_PROTOCOL_MAX, represents SSL 3

New in version 3.4.1.

	
ldap.OPT_X_TLS_PROTOCOL_TLS1_0

	Value for OPT_X_TLS_PROTOCOL_MIN and
OPT_X_TLS_PROTOCOL_MAX, represents TLS 1.0

New in version 3.4.1.

	
ldap.OPT_X_TLS_PROTOCOL_TLS1_1

	Value for OPT_X_TLS_PROTOCOL_MIN and
OPT_X_TLS_PROTOCOL_MAX, represents TLS 1.1

New in version 3.4.1.

	
ldap.OPT_X_TLS_PROTOCOL_TLS1_2

	Value for OPT_X_TLS_PROTOCOL_MIN and
OPT_X_TLS_PROTOCOL_MAX, represents TLS 1.2

New in version 3.4.1.

	
ldap.OPT_X_TLS_PROTOCOL_TLS1_3

	Value for OPT_X_TLS_PROTOCOL_MIN and
OPT_X_TLS_PROTOCOL_MAX, represents TLS 1.3

New in version 3.4.1.

	
ldap.OPT_X_TLS_VERSION

	Get negotiated TLS protocol version as string

	
ldap.OPT_X_TLS_RANDOM_FILE

	get/set path to /dev/urandom (DO NOT USE)

Note

OpenLDAP supports several TLS/SSL libraries. OpenSSL is the most common
backend. Some options may not be available when libldap uses NSS, GnuTLS,
or Apple’s Secure Transport backend.

Keepalive options

	
ldap.OPT_X_KEEPALIVE_IDLE

	

	
ldap.OPT_X_KEEPALIVE_PROBES

	

	
ldap.OPT_X_KEEPALIVE_INTERVAL

	

DN format flags

This constants are used for DN-parsing functions found in
sub-module ldap.dn.

See also

ldap_str2dn(3) [https://www.openldap.org/software/man.cgi?query=ldap_str2dn&sektion=3]

	
ldap.DN_FORMAT_LDAP

	

	
ldap.DN_FORMAT_LDAPV3

	

	
ldap.DN_FORMAT_LDAPV2

	

	
ldap.DN_FORMAT_DCE

	

	
ldap.DN_FORMAT_UFN

	

	
ldap.DN_FORMAT_AD_CANONICAL

	

	
ldap.DN_FORMAT_MASK

	

	
ldap.DN_PRETTY

	

	
ldap.DN_SKIP

	

	
ldap.DN_P_NOLEADTRAILSPACES

	

	
ldap.DN_P_NOSPACEAFTERRDN

	

	
ldap.DN_PEDANTIC

	

Exceptions

The module defines the following exceptions:

	
exception ldap.LDAPError

	This is the base class of all exceptions raised by the module ldap.
Unlike the C interface, errors are not returned as result codes, but
are instead turned into exceptions, raised as soon an the error condition
is detected.

The exceptions are accompanied by a dictionary with additional information.
All fields are optional and more fields may be added in the future.
Currently, python-ldap may set the following fields:

	'result': a numeric code of the error class.

	'desc': string giving a description of the error class, as provided
by calling OpenLDAP’s ldap_err2string on the result.

	'info': string containing more information that the server may
have sent. The value is server-specific: for example, the OpenLDAP server
may send different info messages than Active Directory or 389-DS.

	'matched': truncated form of the name provided or alias.
dereferenced for the lowest entry (object or alias) that was matched.

	'msgid': ID of the matching asynchronous request.
This can be used in asynchronous code where result() raises the
result of an operation as an exception. For example, this is the case for
compare(), always raises the boolean result as an
exception (COMPARE_TRUE or COMPARE_FALSE).

	'ctrls': list of ldap.controls.LDAPControl instances
attached to the error.

	'errno': the C errno, usually set by system calls or libc
rather than the LDAP libraries.

	
exception ldap.ADMINLIMIT_EXCEEDED

	

	
exception ldap.AFFECTS_MULTIPLE_DSAS

	

	
exception ldap.ALIAS_DEREF_PROBLEM

	A problem was encountered when dereferencing an alias.
(Sets the matched field.)

	
exception ldap.ALIAS_PROBLEM

	An alias in the directory points to a nonexistent entry.
(Sets the matched field.)

	
exception ldap.ALREADY_EXISTS

	The entry already exists. E.g. the dn specified with add()
already exists in the DIT.

	
exception ldap.AUTH_UNKNOWN

	The authentication method specified to bind() is not known.

	
exception ldap.BUSY

	The DSA is busy.

	
exception ldap.CLIENT_LOOP

	

	
exception ldap.COMPARE_FALSE

	A compare operation returned false.
(This exception should only be seen asynchronous operations, because
compare_s() returns a boolean result.)

	
exception ldap.COMPARE_TRUE

	A compare operation returned true.
(This exception should only be seen asynchronous operations, because
compare_s() returns a boolean result.)

	
exception ldap.CONFIDENTIALITY_REQUIRED

	Indicates that the session is not protected by a protocol such
as Transport Layer Security (TLS), which provides session
confidentiality.

	
exception ldap.CONNECT_ERROR

	

	
exception ldap.CONSTRAINT_VIOLATION

	An attribute value specified or an operation started violates some
server-side constraint
(e.g., a postalAddress has too many lines or a line that is too long
or a password is expired).

	
exception ldap.CONTROL_NOT_FOUND

	

	
exception ldap.DECODING_ERROR

	An error was encountered decoding a result from the LDAP server.

	
exception ldap.ENCODING_ERROR

	An error was encountered encoding parameters to send to the LDAP server.

	
exception ldap.FILTER_ERROR

	An invalid filter was supplied to search()
(e.g. unbalanced parentheses).

	
exception ldap.INAPPROPRIATE_AUTH

	Inappropriate authentication was specified (e.g. AUTH_SIMPLE
was specified and the entry does not have a userPassword attribute).

	
exception ldap.INAPPROPRIATE_MATCHING

	Filter type not supported for the specified attribute.

	
exception ldap.INSUFFICIENT_ACCESS

	The user has insufficient access to perform the operation.

	
exception ldap.INVALID_CREDENTIALS

	Invalid credentials were presented during bind() or
simple_bind().
(e.g., the wrong password).

	
exception ldap.INVALID_DN_SYNTAX

	A syntactically invalid DN was specified. (Sets the matched field.)

	
exception ldap.INVALID_SYNTAX

	An attribute value specified by the client did not comply to the
syntax defined in the server-side schema.

	
exception ldap.IS_LEAF

	The object specified is a leaf of the directory tree.
Sets the matched field of the exception dictionary value.

	
exception ldap.LOCAL_ERROR

	Some local error occurred. This is usually due to failed memory allocation.

	
exception ldap.LOOP_DETECT

	A loop was detected.

	
exception ldap.MORE_RESULTS_TO_RETURN

	

	
exception ldap.NAMING_VIOLATION

	A naming violation occurred. This is raised e.g. if the LDAP server
has constraints about the tree naming.

	
exception ldap.NO_OBJECT_CLASS_MODS

	Modifying the objectClass attribute as requested is not allowed
(e.g. modifying structural object class of existing entry).

	
exception ldap.NOT_ALLOWED_ON_NONLEAF

	The operation is not allowed on a non-leaf object.

	
exception ldap.NOT_ALLOWED_ON_RDN

	The operation is not allowed on an RDN.

	
exception ldap.NOT_SUPPORTED

	

	
exception ldap.NO_MEMORY

	

	
exception ldap.NO_RESULTS_RETURNED

	

	
exception ldap.NO_SUCH_ATTRIBUTE

	The attribute type specified does not exist in the entry.

	
exception ldap.NO_SUCH_OBJECT

	The specified object does not exist in the directory.
Sets the matched field of the exception dictionary value.

	
exception ldap.OBJECT_CLASS_VIOLATION

	An object class violation occurred when the LDAP server checked
the data sent by the client against the server-side schema
(e.g. a “must” attribute was missing in the entry data).

	
exception ldap.OPERATIONS_ERROR

	An operations error occurred.

	
exception ldap.OTHER

	An unclassified error occurred.

	
exception ldap.PARAM_ERROR

	An ldap routine was called with a bad parameter.

	
exception ldap.PARTIAL_RESULTS

	Partial results only returned. This exception is raised if
a referral is received when using LDAPv2.
(This exception should never be seen with LDAPv3.)

	
exception ldap.PROTOCOL_ERROR

	A violation of the LDAP protocol was detected.

	
exception ldap.RESULTS_TOO_LARGE

	The result does not fit into a UDP packet. This happens only when using
UDP-based CLDAP (connection-less LDAP) which is not supported anyway.

	
exception ldap.SASL_BIND_IN_PROGRESS

	

	
exception ldap.SERVER_DOWN

	The LDAP library can’t contact the LDAP server.

	
exception ldap.SIZELIMIT_EXCEEDED

	An LDAP size limit was exceeded.
This could be due to a sizelimit configuration on the LDAP server.

	
exception ldap.STRONG_AUTH_NOT_SUPPORTED

	The LDAP server does not support strong authentication.

	
exception ldap.STRONG_AUTH_REQUIRED

	Strong authentication is required for the operation.

	
exception ldap.TIMELIMIT_EXCEEDED

	An LDAP time limit was exceeded.

	
exception ldap.TIMEOUT

	A timelimit was exceeded while waiting for a result from the server.

	
exception ldap.TYPE_OR_VALUE_EXISTS

	An attribute type or attribute value specified already
exists in the entry.

	
exception ldap.UNAVAILABLE

	The DSA is unavailable.

	
exception ldap.UNAVAILABLE_CRITICAL_EXTENSION

	Indicates that the LDAP server was unable to satisfy a request
because one or more critical extensions were not available. Either
the server does not support the control or the control is not appropriate
for the operation type.

	
exception ldap.UNDEFINED_TYPE

	An attribute type used is not defined in the server-side schema.

	
exception ldap.UNWILLING_TO_PERFORM

	The DSA is unwilling to perform the operation.

	
exception ldap.USER_CANCELLED

	The operation was cancelled via the abandon() method.

The above exceptions are raised when a result code from an underlying API
call does not indicate success.

Warnings

	
class ldap.LDAPBytesWarning

	This warning is deprecated. python-ldap no longer raises it.

It used to be raised under Python 2 when bytes/text mismatch in non-strict
bytes mode. See Bytes/text management for details.

New in version 3.0.0.

Changed in version 3.4.0: Deprecated.

LDAPObject classes

	
class ldap.ldapobject.LDAPObject

	Instances of LDAPObject are returned by initialize().
The connection is automatically unbound
and closed when the LDAP object is deleted.

LDAPObject is an alias of
SimpleLDAPObject, the default connection class.
If you wish to use a different class, instantiate it directly instead of
calling initialize().

(It is also possible, but not recommended, to change the default by setting
ldap.ldapobject.LDAPObject to a different class.)

	
class ldap.ldapobject.SimpleLDAPObject(uri, trace_level=0, trace_file=None, trace_stack_limit=5, bytes_mode=None, bytes_strictness=None, fileno=None)

	This basic class wraps all methods of the underlying C API object.

The arguments are same as for the initialize() function.

	
class ldap.ldapobject.ReconnectLDAPObject(uri, trace_level=0, trace_file=None, trace_stack_limit=5, bytes_mode=None, bytes_strictness=None, retry_max=1, retry_delay=60.0, fileno=None)

	SimpleLDAPObject subclass whose synchronous request methods
automatically reconnect and re-try in case of server failure
(ldap.SERVER_DOWN).

The first arguments are same as for the initialize()
function.
For automatic reconnects it has additional arguments:

	retry_max: specifies the number of reconnect attempts before
re-raising the ldap.SERVER_DOWN exception.

	retry_delay: specifies the time in seconds between reconnect attempts.

This class also implements the pickle protocol.

Arguments for LDAPv3 controls

The ldap.controls module can be used for constructing and
decoding LDAPv3 controls. These arguments are available in the methods
with names ending in _ext or _ext_s:

	serverctrls

	is a list of ldap.controls.LDAPControl instances sent to the server along
with the LDAP request (see module ldap.controls). These are
controls which alter the behaviour of the server when processing the
request if the control is supported by the server. The effect of controls
might differ depending on the type of LDAP request or controls might not
be applicable with certain LDAP requests at all.

	clientctrls

	is a list of ldap.controls.LDAPControl instances passed to the
client API and alter the behaviour of the client when processing the
request.

Sending LDAP requests

Most methods on LDAP objects initiate an asynchronous request to the
LDAP server and return a message id that can be used later to retrieve
the result with result().

Methods with names ending in _s are the synchronous form
and wait for and return with the server’s result, or with
None if no data is expected.

LDAPObject instances have the following methods:

	
LDAPObject.abandon(msgid) → None

	

	
LDAPObject.abandon_ext(msgid[, serverctrls=None[, clientctrls=None]]) → None

	Abandons an LDAP operation in progress without waiting for a LDAP response.
The msgid argument should be the message ID of an outstanding LDAP
operation as returned by the asynchronous methods search(), modify(), etc.
The caller can expect that the result of an abandoned operation will not be
returned from a future call to result().

serverctrls and clientctrls like described in section Arguments for LDAPv3 controls.

	
LDAPObject.add(dn, modlist) → int

	

	
LDAPObject.add_s(dn, modlist) → None

	

	
LDAPObject.add_ext(dn, modlist[, serverctrls=None[, clientctrls=None]]) → int

	

	
LDAPObject.add_ext_s(dn, modlist[, serverctrls=None[, clientctrls=None]]) → tuple

	Performs an LDAP add operation. The dn argument is the distinguished
name (DN) of the entry to add, and modlist is a list of attributes to be
added. The modlist is similar the one passed to modify(), except that the
operation integer is omitted from the tuples in modlist. You might want to
look into sub-module refmodule{ldap.modlist} for generating the modlist.

The asynchronous methods add() and add_ext()
return the message ID of the initiated request.

serverctrls and clientctrls like described in section Arguments for LDAPv3 controls.

The dn argument, and mod_type (second item) of modlist are text strings;
see Bytes/text management.

	
LDAPObject.bind(who, cred, method) → int

	

	
LDAPObject.bind_s(who, cred, method) → None

	

	
LDAPObject.cancel(cancelid[, serverctrls=None[, clientctrls=None]]) → None

	Send cancels extended operation for an LDAP operation specified by cancelid.
The cancelid should be the message id of an outstanding LDAP operation as returned
by the asynchronous methods search(), modify() etc. The caller
can expect that the result of an abandoned operation will not be
returned from a future call to result().
In opposite to abandon() this extended operation gets an result from
the server and thus should be preferred if the server supports it.

serverctrls and clientctrls like described in section Arguments for LDAPv3 controls.

RFC 3909 [https://tools.ietf.org/html/rfc3909.html] - Lightweight Directory Access Protocol (LDAP): Cancel Operation

	
LDAPObject.compare(dn, attr, value) → int

	

	
LDAPObject.compare_s(dn, attr, value) → bool

	

	
LDAPObject.compare_ext(dn, attr, value[, serverctrls=None[, clientctrls=None]]) → int

	

	
LDAPObject.compare_ext_s(dn, attr, value[, serverctrls=None[, clientctrls=None]]) → bool

	Perform an LDAP comparison between the attribute named attr of entry dn,
and the value value. The synchronous forms returns True or False.
The asynchronous forms returns the message ID of the initiated request, and
the result of the asynchronous compare can be obtained using
result(). The operation can fail with an exception, e.g.
ldap.NO_SUCH_OBJECT when dn does not exist or
ldap.UNDEFINED_TYPE for an invalid attribute.

Note that the asynchronous technique yields the answer
by raising the exception objects ldap.COMPARE_TRUE or
ldap.COMPARE_FALSE.

serverctrls and clientctrls like described in section Arguments for LDAPv3 controls.

The dn and attr arguments are text strings; see Bytes/text management.

	
LDAPObject.delete(dn) → int

	

	
LDAPObject.delete_s(dn) → None

	

	
LDAPObject.delete_ext(dn[, serverctrls=None[, clientctrls=None]]) → int

	

	
LDAPObject.delete_ext_s(dn[, serverctrls=None[, clientctrls=None]]) → tuple

	Performs an LDAP delete operation on dn. The asynchronous form
returns the message id of the initiated request, and the result can be obtained
from a subsequent call to result().

serverctrls and clientctrls like described in section Arguments for LDAPv3 controls.

The dn argument is text string; see Bytes/text management.

	
LDAPObject.extop(extreq[,serverctrls=None[,clientctrls=None]]]) → int

	

	
LDAPObject.extop_s(extreq[,serverctrls=None[,clientctrls=None[,extop_resp_class=None]]]]) -> (respoid,respvalue)

	Performs an LDAP extended operation. The asynchronous
form returns the message id of the initiated request, and the
result can be obtained from a subsequent call to extop_result().

The extreq is an instance of class ldap.extop.ExtendedRequest
containing the parameters for the extended operation request.

serverctrls and clientctrls like described in section Arguments for LDAPv3 controls.

If argument extop_resp_class is set to a sub-class of
ldap.extop.ExtendedResponse this class is used to return an
object of this class instead of a raw BER value in respvalue.

	
LDAPObject.extop_result(self, msgid=ldap.RES_ANY, all=1, timeout=None) -> (respoid, respvalue)

	Wrapper method around result4() just for retrieving
the result of an extended operation sent before.

	
LDAPObject.modify(dn, modlist) → int

	

	
LDAPObject.modify_s(dn, modlist) → None

	

	
LDAPObject.modify_ext(dn, modlist[, serverctrls=None[, clientctrls=None]]) → int

	

	
LDAPObject.modify_ext_s(dn, modlist[, serverctrls=None[, clientctrls=None]]) → tuple

	Performs an LDAP modify operation on an entry’s attributes.
The dn argument is the distinguished name (DN) of the entry to modify,
and modlist is a list of modifications to make to that entry.

Each element in the list modlist should be a tuple of the form
(mod_op,mod_type,mod_vals),
where mod_op indicates the operation (one of ldap.MOD_ADD,
ldap.MOD_DELETE, or ldap.MOD_REPLACE),
mod_type is a string indicating the attribute type name, and
mod_vals is either a string value or a list of string values to add,
delete or replace respectively. For the delete operation, mod_vals
may be None indicating that all attributes are to be deleted.

serverctrls and clientctrls like described in section Arguments for LDAPv3 controls.

The asynchronous methods modify() and modify_ext()
return the message ID of the initiated request.

You might want to look into sub-module ldap.modlist for
generating modlist.

The dn argument, and mod_type (second item) of modlist are text strings;
see Bytes/text management.

	
LDAPObject.modrdn(dn, newrdn[, delold=1]) → int

	

	
LDAPObject.modrdn_s(dn, newrdn[, delold=1]) → None

	Perform a modify RDN operation, (i.e. a renaming operation).
These routines take dn (the DN of the entry whose RDN is to be changed,
and newrdn, the new RDN to give to the entry. The optional parameter
delold is used to specify whether the old RDN should be kept as an
attribute of the entry or not.
The asynchronous version returns the initiated message id.

This operation is emulated by rename() and rename_s() methods
since the modrdn2* routines in the C library are deprecated.

The dn and newrdn arguments are text strings; see Bytes/text management.

	
LDAPObject.passwd(user, oldpw, newpw[, serverctrls=None[, clientctrls=None]]) → int

	

	
LDAPObject.passwd_s(user, oldpw, newpw [, serverctrls=None [, clientctrls=None] [, extract_newpw=False]]]) -> (respoid, respvalue)

	Perform a LDAP Password Modify Extended Operation operation
on the entry specified by user.
The old password in oldpw is replaced with the new
password in newpw by a LDAP server supporting this operation.

If oldpw is not None it has to match the old password
of the specified user which is sometimes used when a user changes
his own password.

respoid is always None. respvalue is also
None unless newpw was None. This requests that
the server generate a new random password. If extract_newpw is
True, this password is a bytes object available through
respvalue.genPasswd, otherwise respvalue is the raw ASN.1 response
(this is deprecated and only for backwards compatibility).

serverctrls and clientctrls like described in section Arguments for LDAPv3 controls.

The asynchronous version returns the initiated message id.

The user, oldpw and newpw arguments are text strings; see Bytes/text management.

See also

RFC 3062 [https://tools.ietf.org/html/rfc3062.html] - LDAP Password Modify Extended Operation
ldap.extop.passwd

	
LDAPObject.rename(dn, newrdn[, newsuperior=None[, delold=1[, serverctrls=None[, clientctrls=None]]]]) → int

	

	
LDAPObject.rename_s(dn, newrdn[, newsuperior=None[, delold=1[, serverctrls=None[, clientctrls=None]]]]) → None

	Perform a Rename operation, (i.e. a renaming operation).
These routines take dn (the DN of the entry whose RDN is to be changed,
and newrdn, the new RDN to give to the entry.
The optional parameter newsuperior is used to specify
a new parent DN for moving an entry in the tree
(not all LDAP servers support this).
The optional parameter delold is used to specify
whether the old RDN should be kept as an attribute of the entry or not.

serverctrls and clientctrls like described in section Arguments for LDAPv3 controls.

The dn and newdn arguments are text strings; see Bytes/text management.

	
LDAPObject.result([msgid=RES_ANY[, all=1[, timeout=None]]]) → 2-tuple

	This method is used to wait for and return the result of an operation
previously initiated by one of the LDAP asynchronous operations
(e.g. search(), modify(), etc.)

The msgid parameter is the integer identifier returned by that method.
The identifier is guaranteed to be unique across an LDAP session,
and tells the result() method to request the result of that
specific operation.

If a result is desired from any one of the in-progress operations,
msgid should be specified as the constant RES_ANY
and the method result2() should be used instead.

The all parameter only has meaning for search() responses
and is used to select whether a single entry of the search
response should be returned, or to wait for all the results
of the search before returning.

A search response is made up of zero or more search entries
followed by a search result. If all is 0, search entries will
be returned one at a time as they come in, via separate calls
to result(). If all is 1, the search response will be returned
in its entirety, i.e. after all entries and the final search
result have been received.

For all set to 0, result tuples
trickle in (with the same message id), and with the result types
RES_SEARCH_ENTRY and RES_SEARCH_REFERENCE,
until the final result which has a result type of RES_SEARCH_RESULT
and a (usually) empty data field. When all is set to 1, only one result is returned,
with a result type of RES_SEARCH_RESULT, and all the result tuples
listed in the data field.

The timeout parameter is a limit on the number of seconds that the
method will wait for a response from the server.
If timeout is negative (which is the default),
the method will wait indefinitely for a response.
The timeout can be expressed as a floating-point value, and
a value of 0 effects a poll.
If a timeout does occur, a ldap.TIMEOUT exception is raised,
unless polling, in which case (None, None) is returned.

The result() method returns a tuple of the form
(result-type, result-data).
The first element, result-type is a string, being one of
these module constants:
RES_BIND, RES_SEARCH_ENTRY,
RES_SEARCH_REFERENCE, RES_SEARCH_RESULT,
RES_MODIFY, RES_ADD, RES_DELETE,
RES_MODRDN, or RES_COMPARE.

If all is 0, one response at a time is returned on
each call to result(), with termination indicated by
result-data being an empty list.

See search() for a description of the search result’s
result-data, otherwise the result-data is normally meaningless.

	
LDAPObject.result2([msgid=RES_ANY[, all=1[, timeout=None]]]) → 3-tuple

	This method behaves almost exactly like result(). But
it returns a 3-tuple also containing the message id of the
outstanding LDAP operation a particular result message belongs
to. This is especially handy if one needs to dispatch results
obtained with msgid=RES_ANY to several consumer
threads which invoked a particular LDAP operation.

	
LDAPObject.result3([msgid=RES_ANY[, all=1[, timeout=None]]]) → 4-tuple

	This method behaves almost exactly like result2(). But it
returns an extra item in the tuple, the decoded server controls.

	
LDAPObject.result4([msgid=RES_ANY[, all=1[, timeout=None[, add_ctrls=0[, add_intermediates=0[, add_extop=0[, resp_ctrl_classes=None]]]]]]]) → 6-tuple

	This method behaves almost exactly like result3(). But it
returns an extra items in the tuple, the decoded results of an extended response.

The additional arguments are:

add_ctrls (integer flag) specifies whether response controls are returned.

add_intermediates (integer flag) specifies whether response controls of
intermediate search results are returned.

add_extop (integer flag) specifies whether the response of an
extended operation is returned. If using extended operations you should
consider using the method extop_result() or
extop_s() instead.

resp_ctrl_classes is a dictionary mapping the OID of a response controls to a
ldap.controls.ResponseControl class of response controls known by the
application. So the response control value will be automatically decoded.
If None the global dictionary ldap.controls.KNOWN_RESPONSE_CONTROLS
is used instead.

	
LDAPObject.sasl_interactive_bind_s(who, auth[, serverctrls=None[, clientctrls=None[, sasl_flags=ldap.SASL_QUIET]]]) → None

	This call is used to bind to the directory with a SASL bind request.

auth is an ldap.sasl.sasl() instance.

serverctrls and clientctrls like described in section Arguments for LDAPv3 controls.

	
LDAPObject.sasl_non_interactive_bind_s(sasl_mech[, serverctrls=None[, clientctrls=None[, sasl_flags=ldap.SASL_QUIET[, authz_id='']]]]) → None

	This call is used to bind to the directory with a SASL bind request with
non-interactive SASL mechanism defined with argument sasl_mech and
internally calls sasl_interactive_bind_s().

serverctrls and clientctrls like described in section Arguments for LDAPv3 controls.

	
LDAPObject.sasl_external_bind_s([serverctrls=None[, clientctrls=None[, sasl_flags=ldap.SASL_QUIET[, authz_id='']]]]) → None

	This call is used to bind to the directory with a SASL bind request with
mechanism EXTERNAL and internally calls sasl_non_interactive_bind_s().

serverctrls and clientctrls like described in section Arguments for LDAPv3 controls.

	
LDAPObject.sasl_gssapi_bind_s([serverctrls=None[, clientctrls=None[, sasl_flags=ldap.SASL_QUIET[, authz_id='']]]]) → None

	This call is used to bind to the directory with a SASL bind request with
mechanism GSSAPI and internally calls sasl_non_interactive_bind_s().

serverctrls and clientctrls like described in section Arguments for LDAPv3 controls.

	
LDAPObject.simple_bind([who=None[, cred=None[, serverctrls=None[, clientctrls=None]]]]) → int

	

	
LDAPObject.simple_bind_s([who=None[, cred=None[, serverctrls=None[, clientctrls=None]]]]) → None

	After an LDAP object is created, and before any other operations can be
attempted over the connection, a bind operation must be performed.

This method attempts to bind with the LDAP server using
either simple authentication, or Kerberos (if available).
The first and most general method, bind(),
takes a third parameter, method which can currently solely
be AUTH_SIMPLE.

serverctrls and clientctrls like described in section Arguments for LDAPv3 controls.

The who and cred arguments are text strings; see Bytes/text management.

Changed in version 3.0: simple_bind() and simple_bind_s()
now accept None for who and cred, too.

	
LDAPObject.search(base, scope[, filterstr='(objectClass=*)'[, attrlist=None[, attrsonly=0]]]) → int

	

	
LDAPObject.search_s(base, scope[, filterstr='(objectClass=*)'[, attrlist=None[, attrsonly=0]]]) → list|None

	

	
LDAPObject.search_st(base, scope[, filterstr='(objectClass=*)'[, attrlist=None[, attrsonly=0[, timeout=-1]]]]) → list|None

	

	
LDAPObject.search_ext(base, scope[, filterstr='(objectClass=*)'[, attrlist=None[, attrsonly=0[, serverctrls=None[, clientctrls=None[, timeout=-1[, sizelimit=0]]]]]]]) → int

	

	
LDAPObject.search_ext_s(base, scope[, filterstr='(objectClass=*)'[, attrlist=None[, attrsonly=0[, serverctrls=None[, clientctrls=None[, timeout=-1[, sizelimit=0]]]]]]]) → list|None

	Perform an LDAP search operation, with base as the DN of the entry
at which to start the search, scope being one of
SCOPE_BASE (to search the object itself),
SCOPE_ONELEVEL (to search the object’s immediate children), or
SCOPE_SUBTREE (to search the object and all its descendants).

The filterstr argument is a string representation of the filter to apply in
the search.

See also

RFC 4515 [https://tools.ietf.org/html/rfc4515.html] - Lightweight Directory Access Protocol (LDAP): String Representation of Search Filters.

Each result tuple is of the form (dn, attrs),
where dn is a string containing the DN (distinguished name) of the
entry, and attrs is a dictionary containing the attributes associated
with the entry. The keys of attrs are strings, and the associated
values are lists of strings.

The DN in dn is automatically extracted using the underlying libldap
function ldap_get_dn(), which may raise an exception if the
DN is malformed.

If attrsonly is non-zero, the values of attrs will be meaningless
(they are not transmitted in the result).

The retrieved attributes can be limited with the attrlist parameter.
If attrlist is None, all the attributes of each entry are returned.

serverctrls and clientctrls like described in section Arguments for LDAPv3 controls.

The synchronous form with timeout, search_st() or search_ext_s(),
will block for at most timeout seconds (or indefinitely if timeout
is negative). A ldap.TIMEOUT exception is raised if no result is received
within the specified time.

The amount of search results retrieved can be limited with the
sizelimit parameter when using search_ext()
or search_ext_s() (client-side search limit). If non-zero
not more than sizelimit results are returned by the server.

The base and filterstr arguments, and attrlist contents,
are text strings; see Bytes/text management.

Changed in version 3.0: filterstr=None is equivalent to filterstr='(objectClass=*)'.

	
LDAPObject.start_tls_s() → None

	
Negotiate TLS with server. The version attribute must have been
set to VERSION3 (which it is by default) before calling this method.
If TLS could not be started an exception will be raised.

See also

RFC 2830 [https://tools.ietf.org/html/rfc2830.html] - Lightweight Directory Access Protocol (v3): Extension for Transport Layer Security

	
LDAPObject.unbind() → int

	

	
LDAPObject.unbind_s() → None

	

	
LDAPObject.unbind_ext([serverctrls=None[, clientctrls=None]]) → int

	

	
LDAPObject.unbind_ext_s([serverctrls=None[, clientctrls=None]]) → None

	This call is used to unbind from the directory, terminate the
current association, and free resources. Once called, the connection to the
LDAP server is closed and the LDAP object is marked invalid.
Further invocation of methods on the object will yield exceptions.

serverctrls and clientctrls like described in section Arguments for LDAPv3 controls.

These methods are all synchronous in nature.

	
LDAPObject.whoami_s() → string

	This synchronous method implements the LDAP “Who Am I?”
extended operation.

It is useful for finding out to find out which identity
is assumed by the LDAP server after a SASL bind.

See also

RFC 4532 [https://tools.ietf.org/html/rfc4532.html] - Lightweight Directory Access Protocol (LDAP) “Who am I?” Operation

Connection-specific LDAP options

	
LDAPObject.get_option(option) → int|string

	This method returns the value of the LDAPObject option
specified by option.

	
LDAPObject.set_option(option, invalue) → None

	This method sets the value of the LDAPObject option
specified by option to invalue.

Object attributes

If the underlying library provides enough information,
each LDAP object will also have the following attributes.
These attributes are mutable unless described as read-only.

	
LDAPObject.deref -> int

	Controls whether aliases are automatically dereferenced.
This must be one of DEREF_NEVER, DEREF_SEARCHING,
DEREF_FINDING or DEREF_ALWAYS.
This option is mapped to option constant OPT_DEREF
and used in the underlying OpenLDAP client lib.

	
LDAPObject.network_timeout -> int

	Limit on waiting for a network response, in seconds.
Defaults to NO_LIMIT.
This option is mapped to option constant OPT_NETWORK_TIMEOUT
and used in the underlying OpenLDAP client lib.

Changed in version 3.0.0: A timeout of -1 or None resets timeout to infinity.

	
LDAPObject.protocol_version -> int

	Version of LDAP in use (either VERSION2 for LDAPv2
or VERSION3 for LDAPv3).
This option is mapped to option constant OPT_PROTOCOL_VERSION
and used in the underlying OpenLDAP client lib.

Note

It is highly recommended to set the protocol version after establishing
a LDAP connection with ldap.initialize() and before submitting
the first request.

	
LDAPObject.sizelimit -> int

	Limit on size of message to receive from server.
Defaults to NO_LIMIT.
This option is mapped to option constant OPT_SIZELIMIT
and used in the underlying OpenLDAP client lib. Its use is deprecated
in favour of sizelimit parameter when using search_ext().

	
LDAPObject.timelimit -> int

	Limit on waiting for any response, in seconds.
Defaults to NO_LIMIT.
This option is mapped to option constant OPT_TIMELIMIT
and used in the underlying OpenLDAP client lib. Its use is deprecated
in favour of using timeout.

	
LDAPObject.timeout -> int

	Limit on waiting for any response, in seconds.
Defaults to NO_LIMIT.
This option is used in the wrapper module.

Example

The following example demonstrates how to open a connection to an
LDAP server using the ldap module and invoke a synchronous
subtree search.

>>> import ldap
>>> l = ldap.initialize('ldap://localhost:1390')
>>> l.search_s('ou=Testing,dc=stroeder,dc=de',ldap.SCOPE_SUBTREE,'(cn=fred*)',['cn','mail'])
[('cn=Fred Feuerstein,ou=Testing,dc=stroeder,dc=de', {'cn': ['Fred Feuerstein']})]
>>> r = l.search_s('ou=Testing,dc=stroeder,dc=de',ldap.SCOPE_SUBTREE,'(objectClass=*)',['cn','mail'])
>>> for dn,entry in r:
>>> print('Processing',repr(dn))
>>> handle_ldap_entry(entry)

ldap.asyncsearch Stream-processing of large search results

With newer Python versions one might want to consider using
ldap.resiter instead.

Changed in version 3.0: In Python 3.7 async is a reserved keyword. The module
ldap.async has been renamed to ldap.asyncsearch. The
old name ldap.async is still available for backwards
compatibility.

Deprecated since version 3.0: The old name ldap.async is deprecated, but will not be removed
until Python 3.6 reaches end-of-life.

Classes

	
class ldap.asyncsearch.AsyncSearchHandler(l)

	Class for stream-processing LDAP search results

Arguments:

	l

	LDAPObject instance

	
afterFirstResult()

	Do anything you want right after successfully receiving but before
processing first result

	
postProcessing()

	Do anything you want after receiving and processing all results

	
preProcessing()

	Do anything you want after starting search but
before receiving and processing results

	
processResults(ignoreResultsNumber=0, processResultsCount=0, timeout=-1)

	
	ignoreResultsNumber

	Don’t process the first ignoreResultsNumber results.

	processResultsCount

	If non-zero this parameters indicates the number of results
processed is limited to processResultsCount.

	timeout

	See parameter timeout of ldap.LDAPObject.result()

	
startSearch(searchRoot, searchScope, filterStr, attrList=None, attrsOnly=0, timeout=-1, sizelimit=0, serverctrls=None, clientctrls=None)

	
	searchRoot

	See parameter base of method LDAPObject.search()

	searchScope

	See parameter scope of method LDAPObject.search()

	filterStr

	See parameter filter of method LDAPObject.search()

	attrList=None

	See parameter attrlist of method LDAPObject.search()

	attrsOnly

	See parameter attrsonly of method LDAPObject.search()

	timeout

	Maximum time the server shall use for search operation

	sizelimit

	Maximum number of entries a server should return
(request client-side limit)

	serverctrls

	list of server-side LDAP controls

	clientctrls

	list of client-side LDAP controls

	
class ldap.asyncsearch.List(l)

	Class for collecting all search results.

This does not seem to make sense in the first place but think
of retrieving exactly a certain portion of the available search
results.

	
class ldap.asyncsearch.Dict(l)

	Class for collecting all search results into a dictionary {dn:entry}

	
class ldap.asyncsearch.IndexedDict(l, indexed_attrs=None)

	Class for collecting all search results into a dictionary {dn:entry}
and maintain case-sensitive equality indexes to entries

	
class ldap.asyncsearch.LDIFWriter(l, writer_obj, headerStr='', footerStr='')

	Class for writing a stream LDAP search results to a LDIF file

Arguments:

	l

	LDAPObject instance

	writer_obj

	Either a file-like object or a ldif.LDIFWriter instance used for output

Examples

Using ldap.asyncsearch.List

This example demonstrates how to use class ldap.asyncsearch.List for
retrieving partial search results even though the exception
ldap.SIZELIMIT_EXCEEDED was raised because a server side limit was hit.

import sys,ldap,ldap.asyncsearch

s = ldap.asyncsearch.List(
 ldap.initialize('ldap://localhost'),
)

s.startSearch(
 'dc=stroeder,dc=com',
 ldap.SCOPE_SUBTREE,
 '(objectClass=*)',
)

try:
 partial = s.processResults()
except ldap.SIZELIMIT_EXCEEDED:
 sys.stderr.write('Warning: Server-side size limit exceeded.\n')
else:
 if partial:
 sys.stderr.write('Warning: Only partial results received.\n')

sys.stdout.write(
 '%d results received.\n' % (
 len(s.allResults)
)
)

Using ldap.asyncsearch.LDIFWriter

This example demonstrates how to use class ldap.asyncsearch.LDIFWriter
for writing search results as LDIF to stdout.

import sys,ldap,ldap.asyncsearch

s = ldap.asyncsearch.LDIFWriter(
 ldap.initialize('ldap://localhost:1390'),
 sys.stdout
)

s.startSearch(
 'dc=stroeder,dc=com',
 ldap.SCOPE_SUBTREE,
 '(objectClass=*)',
)

try:
 partial = s.processResults()
except ldap.SIZELIMIT_EXCEEDED:
 sys.stderr.write('Warning: Server-side size limit exceeded.\n')
else:
 if partial:
 sys.stderr.write('Warning: Only partial results received.\n')

sys.stderr.write(
 '%d results received.\n' % (
 s.endResultBreak-s.beginResultsDropped
)
)

ldap.controls High-level access to LDAPv3 extended controls

Variables

	
ldap.controls.KNOWN_RESPONSE_CONTROLS

	Dictionary mapping the OIDs of known response controls to the accompanying
ResponseControl classes. This is used
by DecodeControlTuples() to automatically decode control values.
Calling application can also register their custom ResponseControl
classes in this dictionary possibly overriding pre-registered classes.

Classes

This module defines the following classes:

	
class ldap.controls.RequestControl(controlType=None, criticality=False, encodedControlValue=None)

	Base class for all request controls

	controlType

	OID as string of the LDAPv3 extended request control

	criticality

	sets the criticality of the control (boolean)

	encodedControlValue

	control value of the LDAPv3 extended request control
(here it is the BER-encoded ASN.1 control value)

	
encodeControlValue()

	sets class attribute encodedControlValue to the BER-encoded ASN.1
control value composed by class attributes set before

	
class ldap.controls.ResponseControl(controlType=None, criticality=False)

	Base class for all response controls

	controlType

	OID as string of the LDAPv3 extended response control

	criticality

	sets the criticality of the received control (boolean)

	
decodeControlValue(encodedControlValue)

	decodes the BER-encoded ASN.1 control value and sets the appropriate
class attributes

	
class ldap.controls.LDAPControl(controlType=None, criticality=False, controlValue=None, encodedControlValue=None)

	Base class for combined request/response controls mainly
for backward-compatibility to python-ldap 2.3.x

Functions

This module defines the following functions:

	
ldap.controls.RequestControlTuples(ldapControls)

	Return list of readily encoded 3-tuples which can be directly
passed to C module _ldap

	ldapControls

	sequence-type of RequestControl objects

	
ldap.controls.DecodeControlTuples(ldapControlTuples, knownLDAPControls=None)

	Returns list of readily decoded ResponseControl objects

	ldapControlTuples

	Sequence-type of 3-tuples returned by _ldap.result4() containing
the encoded ASN.1 control values of response controls.

	knownLDAPControls

	Dictionary mapping extended control’s OID to ResponseControl class
of response controls known by the application. If None
ldap.controls.KNOWN_RESPONSE_CONTROLS is used here.

Sub-modules

Various sub-modules implement specific LDAPv3 extended controls. The classes
therein are derived from the base-classes ldap.controls.RequestControl,
ldap.controls.ResponseControl or ldap.controls.LDAPControl.

Some of them require pyasn1 and pyasn1_modules to be installed:

Usually the names of the method arguments and the class attributes match
the ASN.1 identifiers used in the specification. So looking at the referenced
RFC or Internet-Draft is very helpful to understand the API.

ldap.controls.simple Very simple controls

	
class ldap.controls.simple.ValueLessRequestControl(controlType=None, criticality=False)

	Base class for controls without a controlValue.
The presence of the control in a LDAPv3 request changes the server’s
behaviour when processing the request simply based on the controlType.

	controlType

	OID of the request control

	criticality

	criticality request control

	
encodeControlValue()

	sets class attribute encodedControlValue to the BER-encoded ASN.1
control value composed by class attributes set before

	
class ldap.controls.simple.OctetStringInteger(controlType=None, criticality=False, integerValue=None)

	Base class with controlValue being unsigend integer values

	integerValue

	Integer to be sent as OctetString

	
decodeControlValue(encodedControlValue)

	decodes the BER-encoded ASN.1 control value and sets the appropriate
class attributes

	
encodeControlValue()

	sets class attribute encodedControlValue to the BER-encoded ASN.1
control value composed by class attributes set before

	
class ldap.controls.simple.BooleanControl(controlType=None, criticality=False, booleanValue=False)

	Base class for simple request controls with boolean control value.

Constructor argument and class attribute:

	booleanValue

	Boolean (True/False or 1/0) which is the boolean controlValue.

	
decodeControlValue(encodedControlValue)

	decodes the BER-encoded ASN.1 control value and sets the appropriate
class attributes

	
encodeControlValue()

	sets class attribute encodedControlValue to the BER-encoded ASN.1
control value composed by class attributes set before

	
class ldap.controls.simple.ManageDSAITControl(criticality=False)

	Manage DSA IT Control

See also

RFC 3296 [https://tools.ietf.org/html/rfc3296.html] - Named Subordinate References in Lightweight Directory Access Protocol (LDAP) Directories

	
class ldap.controls.simple.RelaxRulesControl(criticality=False)

	Relax Rules Control

See also

draft-zeilenga-ldap-relax [https://tools.ietf.org/html/draft-zeilenga-ldap-relax]

	
class ldap.controls.simple.ProxyAuthzControl(criticality, authzId)

	Proxy Authorization Control

	authzId

	string containing the authorization ID indicating the identity
on behalf which the server should process the request

See also

RFC 4370 [https://tools.ietf.org/html/rfc4370.html] - Lightweight Directory Access Protocol (LDAP): Proxied Authorization Control

	
class ldap.controls.simple.AuthorizationIdentityRequestControl(criticality)

	Authorization Identity Request and Response Controls

See also

RFC 3829 [https://tools.ietf.org/html/rfc3829.html] - Lightweight Directory Access Protocol (LDAP): Authorization Identity Request and Response Controls

	
class ldap.controls.simple.AuthorizationIdentityResponseControl(controlType=None, criticality=False)

	Authorization Identity Request and Response Controls

Class attributes:

	authzId

	decoded authorization identity

See also

RFC 3829 [https://tools.ietf.org/html/rfc3829.html] - Lightweight Directory Access Protocol (LDAP): Authorization Identity Request and Response Controls

	
decodeControlValue(encodedControlValue)

	decodes the BER-encoded ASN.1 control value and sets the appropriate
class attributes

	
class ldap.controls.simple.GetEffectiveRightsControl(criticality, authzId=None)

	Get Effective Rights Control

ldap.controls.libldap Various controls implemented in OpenLDAP libs

This module wraps C functions in OpenLDAP client libs which implement various
request and response controls into Python classes.

	
class ldap.controls.libldap.AssertionControl(criticality=True, filterstr='(objectClass=*)')

	LDAP Assertion control, as defined in RFC 4528

	filterstr

	LDAP filter string specifying which assertions have to match
so that the server processes the operation

See also

RFC 4528 [https://tools.ietf.org/html/rfc4528.html] - Lightweight Directory Access Protocol (LDAP) Assertion Control

	
encodeControlValue()

	sets class attribute encodedControlValue to the BER-encoded ASN.1
control value composed by class attributes set before

	
class ldap.controls.libldap.MatchedValuesControl(criticality=False, filterstr='(objectClass=*)')

	LDAP Matched Values control, as defined in RFC 3876

	filterstr

	LDAP filter string specifying which attribute values
should be returned

See also

RFC 3876 [https://tools.ietf.org/html/rfc3876.html] - Returning Matched Values with the Lightweight Directory Access Protocol version 3 (LDAPv3)

	
encodeControlValue()

	sets class attribute encodedControlValue to the BER-encoded ASN.1
control value composed by class attributes set before

	
class ldap.controls.libldap.SimplePagedResultsControl(criticality=False, size=None, cookie=None)

	LDAP Control Extension for Simple Paged Results Manipulation

	size

	Page size requested (number of entries to be returned)

	cookie

	Cookie string received with last page

See also

RFC 2696 [https://tools.ietf.org/html/rfc2696.html] - LDAP Control Extension for Simple Paged Results Manipulation

	
decodeControlValue(encodedControlValue)

	decodes the BER-encoded ASN.1 control value and sets the appropriate
class attributes

	
encodeControlValue()

	sets class attribute encodedControlValue to the BER-encoded ASN.1
control value composed by class attributes set before

ldap.controls.psearch LDAP Persistent Search

This module implements request and response controls for LDAP persistent
search.

See also

draft-ietf-ldapext-psearch [https://tools.ietf.org/html/draft-ietf-ldapext-psearch]

	
class ldap.controls.psearch.PersistentSearchControl(criticality=True, changeTypes=None, changesOnly=False, returnECs=True)

	Implements the request control for persistent search.

	changeTypes

	List of strings specifying the types of changes returned by the server.
Setting to None requests all changes.

	changesOnly

	Boolean which indicates whether only changes are returned by the server.

	returnECs

	Boolean which indicates whether the server should return an
Entry Change Notification response control

	
class PersistentSearchControlValue(**kwargs)

	

	
encodeControlValue()

	sets class attribute encodedControlValue to the BER-encoded ASN.1
control value composed by class attributes set before

	
class ldap.controls.psearch.EntryChangeNotificationControl(controlType=None, criticality=False)

	Implements the response control for persistent search.

Class attributes with values extracted from the response control:

	changeType

	String indicating the type of change causing this result to be
returned by the server

	previousDN

	Old DN of the entry in case of a modrdn change

	changeNumber

	A change serial number returned by the server (optional).

	
decodeControlValue(encodedControlValue)

	decodes the BER-encoded ASN.1 control value and sets the appropriate
class attributes

ldap.controls.sessiontrack Session tracking control

See also

draft-wahl-ldap-session [https://tools.ietf.org/html/draft-wahl-ldap-session]

	
class ldap.controls.sessiontrack.SessionTrackingControl(sessionSourceIp, sessionSourceName, formatOID, sessionTrackingIdentifier)

	Class for Session Tracking Control

Because criticality MUST be false for this control it cannot be set
from the application.

	sessionSourceIp

	IP address of the request source as string

	sessionSourceName

	Name of the request source as string

	formatOID

	OID as string specifying the format

	sessionTrackingIdentifier

	String containing a specific tracking ID

	
class SessionIdentifierControlValue(**kwargs)

	

	
encodeControlValue()

	sets class attribute encodedControlValue to the BER-encoded ASN.1
control value composed by class attributes set before

ldap.controls.readentry Read entry control

See also

RFC 4527 [https://tools.ietf.org/html/rfc4527.html] - Lightweight Directory Access Protocol (LDAP): Read Entry Controls

Changed in version 4.0: The attribute values of the entry now consists of bytes instead of ISO8859-1 decoded str.

	
class ldap.controls.readentry.ReadEntryControl(criticality=False, attrList=None)

	Base class for read entry control described in RFC 4527

	attrList

	list of attribute type names requested

Class attributes with values extracted from the response control:

	dn

	string holding the distinguished name of the LDAP entry

	entry

	dictionary holding the LDAP entry

	
decodeControlValue(encodedControlValue)

	decodes the BER-encoded ASN.1 control value and sets the appropriate
class attributes

	
encodeControlValue()

	sets class attribute encodedControlValue to the BER-encoded ASN.1
control value composed by class attributes set before

	
class ldap.controls.readentry.PreReadControl(criticality=False, attrList=None)

	Class for pre-read control described in RFC 4527

	attrList

	list of attribute type names requested

Class attributes with values extracted from the response control:

	dn

	string holding the distinguished name of the LDAP entry
before the operation was done by the server

	entry

	dictionary holding the LDAP entry
before the operation was done by the server

	
class ldap.controls.readentry.PostReadControl(criticality=False, attrList=None)

	Class for post-read control described in RFC 4527

	attrList

	list of attribute type names requested

Class attributes with values extracted from the response control:

	dn

	string holding the distinguished name of the LDAP entry
after the operation was done by the server

	entry

	dictionary holding the LDAP entry
after the operation was done by the server

ldap.controls.ppolicy Password Policy Control

See also

draft-behera-ldap-password-policy [https://tools.ietf.org/html/draft-behera-ldap-password-policy]

	
class ldap.controls.ppolicy.PasswordPolicyControl(criticality=False)

	Indicates the errors and warnings about the password policy.

	
timeBeforeExpiration

	The time before the password expires.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
graceAuthNsRemaining

	The number of grace authentications remaining.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
error

	The password and authentication errors.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
decodeControlValue(encodedControlValue)

	decodes the BER-encoded ASN.1 control value and sets the appropriate
class attributes

ldap.dn LDAP Distinguished Name handling

See also

For LDAPv3 DN syntax see:

RFC 4514 [https://tools.ietf.org/html/rfc4514.html] - Lightweight Directory Access Protocol (LDAP): String Representation of Distinguished Names

See also

For deprecated LDAPv2 DN syntax (obsoleted by LDAPv3) see:

RFC 1779 [https://tools.ietf.org/html/rfc1779.html] - A String Representation of Distinguished Names

The ldap.dn module defines the following functions:

	
ldap.dn.escape_dn_chars(s) → string

	This function escapes characters in string s which are special in LDAP
distinguished names. You should use this function when building LDAP DN strings
from arbitrary input.

	
ldap.dn.str2dn(s[, flags=0]) → list

	This function takes s and breaks it up into its component parts down to AVA
level. The optional parameter flags describes the DN format of s (see
DN format flags). Note that hex-encoded non-ASCII chars are decoded
to the raw bytes.

Internally this function is implemented by calling OpenLDAP C function
ldap_str2dn(3) [https://www.openldap.org/software/man.cgi?query=ldap_str2dn&sektion=3].

	
ldap.dn.dn2str(dn) → string

	This function takes a decomposed DN in dn and returns a single string. It’s
the inverse to str2dn(). Special characters are escaped with the help of
function escape_dn_chars().

	
ldap.dn.explode_dn(dn[, notypes=False[, flags=0]]) → list

	This function takes dn and breaks it up into its component parts. Each part
is known as an RDN (Relative Distinguished Name). The optional notypes
parameter is used to specify that only the RDN values be returned and not
their types. The optional parameter flags describes the DN format of s (see
DN format flags). This function is emulated by function
str2dn() since the function ldap_explode_dn() in the C library is
deprecated.

	
ldap.dn.explode_rdn(rdn[, notypes=False[, flags=0]]) → list

	This function takes a (multi-valued) rdn and breaks it up into a list of
characteristic attributes. The optional notypes parameter is used to specify
that only the RDN values be returned and not their types. The optional flags
parameter describes the DN format of s (see DN format flags). This
function is emulated by function str2dn() since the function
ldap_explode_rdn() in the C library is deprecated.

	
ldap.dn.is_dn(dn[, flags=0]) → boolean

	This function checks whether dn is a valid LDAP distinguished name by
passing it to function str2dn().

Examples

Splitting a LDAPv3 DN to AVA level. Note that both examples have the same result
but in the first example the non-ASCII chars are passed as is (byte buffer string)
whereas in the second example the hex-encoded DN representation are passed to the function.

>>> ldap.dn.str2dn('cn=Michael Str\xc3\xb6der,dc=example,dc=com',flags=ldap.DN_FORMAT_LDAPV3)
[[('cn', 'Michael Str\xc3\xb6der', 4)], [('dc', 'example', 1)], [('dc', 'com', 1)]]
>>> ldap.dn.str2dn('cn=Michael Str\C3\B6der,dc=example,dc=com',flags=ldap.DN_FORMAT_LDAPV3)
[[('cn', 'Michael Str\xc3\xb6der', 4)], [('dc', 'example', 1)], [('dc', 'com', 1)]]

Splitting a LDAPv2 DN into RDN parts:

>>> ldap.dn.explode_dn('cn=John Doe;dc=example;dc=com',flags=ldap.DN_FORMAT_LDAPV2)
['cn=John Doe', 'dc=example', 'dc=com']

Splitting a multi-valued RDN:

>>> ldap.dn.explode_rdn('cn=John Doe+mail=john.doe@example.com',flags=ldap.DN_FORMAT_LDAPV2)
['cn=John Doe', 'mail=john.doe@example.com']

Splitting a LDAPv3 DN with a multi-valued RDN into its AVA parts:

>>> ldap.dn.str2dn('cn=John Doe+mail=john.doe@example.com,dc=example,dc=com')
[[('cn', 'John Doe', 1), ('mail', 'john.doe@example.com', 1)], [('dc', 'example', 1)], [('dc', 'com', 1)]]

ldap.extop High-level access to LDAPv3 extended operations

Classes

This module defines the following classes:

	
class ldap.extop.ExtendedRequest(requestName, requestValue)

	Generic base class for a LDAPv3 extended operation request

	requestName

	OID as string of the LDAPv3 extended operation request

	requestValue

	value of the LDAPv3 extended operation request
(here it is the BER-encoded ASN.1 request value)

	
encodedRequestValue()

	returns the BER-encoded ASN.1 request value composed by class attributes
set before

	
class ldap.extop.ExtendedResponse(responseName, encodedResponseValue)

	Generic base class for a LDAPv3 extended operation response

	requestName

	OID as string of the LDAPv3 extended operation response

	encodedResponseValue

	BER-encoded ASN.1 value of the LDAPv3 extended operation response

	
decodeResponseValue(value)

	decodes the BER-encoded ASN.1 extended operation response value and
sets the appropriate class attributes

ldap.extop.dds Classes for Dynamic Entries extended operations

This requires pyasn1 and pyasn1_modules to be installed.

See also

RFC 2589 [https://tools.ietf.org/html/rfc2589.html] - Lightweight Directory Access Protocol (v3): Extensions for Dynamic Directory Services

	
class ldap.extop.dds.RefreshRequest(requestName=None, entryName=None, requestTtl=None)

	
	
class RefreshRequestValue(**kwargs)

	

	
encodedRequestValue()

	returns the BER-encoded ASN.1 request value composed by class attributes
set before

	
class ldap.extop.dds.RefreshResponse(responseName, encodedResponseValue)

	
	
class RefreshResponseValue(**kwargs)

	

	
decodeResponseValue(value)

	decodes the BER-encoded ASN.1 extended operation response value and
sets the appropriate class attributes

ldap.filter LDAP filter handling

See also

RFC 4515 [https://tools.ietf.org/html/rfc4515.html] - Lightweight Directory Access Protocol (LDAP): String Representation of Search Filters.

The ldap.filter module defines the following functions:

	
ldap.filter.escape_filter_chars(assertion_value[, escape_mode=0])

	This function escapes characters in assertion_value which are special in LDAP
filters. You should use this function when building LDAP filter strings from
arbitrary input. escape_mode means: If 0 only special chars
mentioned in RFC 4515 are escaped. If 1 all NON-ASCII chars are
escaped. If 2 all chars are escaped.

	
ldap.filter.filter_format(filter_template, assertion_values)

	This function applies escape_filter_chars() to each of the strings in
list assertion_values. After that filter_template containing as many
%s placeholders as count of assertion values is used to build the
whole filter string.

ldap.modlist Generate modify lists

The ldap.modlist module defines the following functions:

	
ldap.modlist.addModlist(entry[, ignore_attr_types=[]]) → list

	This function builds a list suitable for passing it directly as argument
modlist to method ldap.ldapobject.LDAPObject.add() or
its synchronous counterpart ldap.ldapobject.LDAPObject.add_s().

entry is a dictionary like returned when receiving search results.

ignore_attr_types is a list of attribute type
names which shall be ignored completely. Attributes of these types will not appear
in the result at all.

	
ldap.modlist.modifyModlist(old_entry, new_entry[, ignore_attr_types=[][, ignore_oldexistent=0[, case_ignore_attr_types=None]]]) → list

	This function builds a list suitable for passing it directly as argument
modlist to method ldap.ldapobject.LDAPObject.modify() or
its synchronous counterpart ldap.ldapobject.LDAPObject.modify_s().

Roughly when applying the resulting modify list to an entry
holding the data old_entry it will be modified in such a way that the entry
holds new_entry after the modify operation. It is handy in situations when it
is impossible to track user changes to an entry’s data or for synchronizing
operations.

old_entry and new_entry are dictionaries like returned when
receiving search results.

ignore_attr_types is a list of attribute type
names which shall be ignored completely. These attribute types will not appear
in the result at all.

If ignore_oldexistent is non-zero attribute type names which
are in old_entry but are not found in new_entry at all are not deleted.
This is handy for situations where your application sets attribute value to
an empty string for deleting an attribute. In most cases leave zero.

If case_ignore_attr_types is a list of attribute type names for which
the comparison will be conducted case-insensitive. It is useful in
situations where a LDAP server normalizes values and one wants to avoid
unnecessary changes (e.g. case of attribute type names in DNs).

Note

Replacing attribute values is always done with a
ldap.MOD_DELETE/ldap.MOD_ADD pair instead of
ldap.MOD_REPLACE to work-around potential issues with
attributes for which no EQUALITY matching rule are defined in the
server’s subschema. This works correctly in most situations but
rarely fails with some LDAP servers implementing (schema) checks on
transient state entry during processing the modify operation.

ldap.resiter Generator for stream-processing of large search results

	
class ldap.resiter.ResultProcessor

	

This is a mix-in class to be used with class ldap.LDAPObject or
derived classes which has these methods:

	
ResultProcessor.allresults(msgid, timeout=-1, add_ctrls=0)

	Generator function which returns an iterator for processing all LDAP operation
results of the given msgid like retrieved with LDAPObject.result3() -> 4-tuple

Examples

Using ldap.resiter.ResultProcessor

This example demonstrates how to use mix-in class ldap.resiter.ResultProcessor for
retrieving results formerly requested with ldap.LDAPObject.search() and
processing them in a for-loop.

import sys,ldap,ldap.resiter

class MyLDAPObject(ldap.ldapobject.LDAPObject,ldap.resiter.ResultProcessor):
 pass

l = MyLDAPObject('ldap://localhost')

Asynchronous search method
msg_id = l.search('dc=stroeder,dc=com',ldap.SCOPE_SUBTREE,'(objectClass=*)')

for res_type,res_data,res_msgid,res_controls in l.allresults(msg_id):
 for dn,entry in res_data:
 # process dn and entry
 print(dn,entry['objectClass'])

ldap.schema Handling LDAPv3 schema

This module deals with schema information usually retrieved from
a special subschema subentry provided by the server.
It is closely modeled along the directory information model described
in the following RFC with which you should make yourself familiar
when trying to use this module:

See also

RFC 4512 [https://tools.ietf.org/html/rfc4512.html] - Lightweight Directory Access Protocol (LDAP): Directory Information Models

ldap.schema.subentry Processing LDAPv3 subschema subentry

	
ldap.schema.subentry.NOT_HUMAN_READABLE_LDAP_SYNTAXES

	Dictionary where the keys are the OIDs of LDAP syntaxes known to be
not human-readable when displayed to a console without conversion
and which cannot be decoded to a types.UnicodeType.

Functions

	
ldap.schema.subentry.urlfetch(uri, trace_level=0)

	Fetches a parsed schema entry by uri.

If uri is a LDAP URL the LDAP server is queried directly.
Otherwise uri is assumed to point to a LDIF file which
is loaded with urllib.

Classes

	
class ldap.schema.subentry.SubSchema(sub_schema_sub_entry, check_uniqueness=1)

	Arguments:

	sub_schema_sub_entry

	Dictionary usually returned by LDAP search or the LDIF parser
containing the sub schema sub entry

	check_uniqueness

	Defines whether uniqueness of OIDs and NAME is checked.

	0

	no check

	1

	check but add schema description with work-around

	2

	check and raise exception if non-unique OID or NAME is found

Class attributes:

	sed

	Dictionary holding the subschema information as pre-parsed
SchemaElement objects (do not access directly!)

	name2oid

	Dictionary holding the mapping from NAMEs to OIDs
(do not access directly!)

	non_unique_oids

	List of OIDs used at least twice in the subschema

	non_unique_names

	List of NAMEs used at least twice in the subschema for the same schema element

	
attribute_types(object_class_list, attr_type_filter=None, raise_keyerror=1, ignore_dit_content_rule=0)

	Returns a 2-tuple of all must and may attributes including
all inherited attributes of superior object classes
by walking up classes along the SUP attribute.

The attributes are stored in a ldap.cidict.cidict dictionary.

	object_class_list

	list of strings specifying object class names or OIDs

	attr_type_filter

	list of 2-tuples containing lists of class attributes
which has to be matched

	raise_keyerror

	All KeyError exceptions for non-existent schema elements
are ignored

	ignore_dit_content_rule

	A DIT content rule governing the structural object class
is ignored

	
get_applicable_aux_classes(nameoroid)

	Return a list of the applicable AUXILIARY object classes
for a STRUCTURAL object class specified by ‘nameoroid’
if the object class is governed by a DIT content rule.
If there’s no DIT content rule all available AUXILIARY
object classes are returned.

	
get_inheritedattr(se_class, nameoroid, name)

	Get a possibly inherited attribute specified by name
of a schema element specified by nameoroid.
Returns None if class attribute is not set at all.

Raises KeyError if no schema element is found by nameoroid.

	
get_inheritedobj(se_class, nameoroid, inherited=None)

	Get a schema element by name or OID with all class attributes
set including inherited class attributes

	
get_obj(se_class, nameoroid, default=None, raise_keyerror=0)

	Get a schema element by name or OID

	
get_structural_oc(oc_list)

	Returns OID of structural object class in oc_list
if any is present. Returns None else.

	
get_syntax(nameoroid)

	Get the syntax of an attribute type specified by name or OID

	
getoid(se_class, nameoroid, raise_keyerror=0)

	Get an OID by name or OID

	
ldap_entry()

	Returns a dictionary containing the sub schema sub entry

	
listall(schema_element_class, schema_element_filters=None)

	Returns a list of OIDs of all available schema
elements of a given schema element class.

	
tree(schema_element_class, schema_element_filters=None)

	Returns a ldap.cidict.cidict dictionary representing the
tree structure of the schema elements.

ldap.schema.models Schema elements

	
class ldap.schema.models.Entry(schema, dn, entry)

	Schema-aware implementation of an LDAP entry class.

Mainly it holds the attributes in a string-keyed dictionary with
the OID as key.

	
attribute_types(attr_type_filter=None, raise_keyerror=1)

	Convenience wrapper around SubSchema.attribute_types() which
passes object classes of this particular entry as argument to
SubSchema.attribute_types()

	
items() → a set-like object providing a view on D's items

	

	
keys() → a set-like object providing a view on D's keys

	

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
class ldap.schema.models.SchemaElement(schema_element_str=None)

	Base class for all schema element classes. Not used directly!

Arguments:

	schema_element_str

	String which contains the schema element description to be parsed.
(Bytestrings are decoded using UTF-8)

Class attributes:

	schema_attribute

	LDAP attribute type containing a certain schema element description

	token_defaults

	Dictionary internally used by the schema element parser
containing the defaults for certain schema description key-words

	
class ldap.schema.models.AttributeType(schema_element_str=None)

	Arguments:

	schema_element_str

	String containing an AttributeTypeDescription

Class attributes:

	oid

	OID assigned to the attribute type (string)

	names

	All NAMEs of the attribute type (tuple of strings)

	desc

	Description text (DESC) of the attribute type (string, or None if missing)

	obsolete

	Integer flag (0 or 1) indicating whether the attribute type is marked
as OBSOLETE in the schema

	single_value

	Integer flag (0 or 1) indicating whether the attribute must
have only one value

	syntax

	OID of the LDAP syntax assigned to the attribute type

	no_user_mod

	Integer flag (0 or 1) indicating whether the attribute is modifiable
by a client application

	equality

	NAME or OID of the matching rule used for checking whether attribute values
are equal (string, or None if missing)

	substr

	NAME or OID of the matching rule used for checking whether an attribute
value contains another value (string, or None if missing)

	ordering

	NAME or OID of the matching rule used for checking whether attribute values
are lesser-equal than (string, or None if missing)

	usage

	USAGE of an attribute type:
0 = userApplications
1 = directoryOperation,
2 = distributedOperation,
3 = dSAOperation

	sup

	NAMEs or OIDs of attribute types this attribute type is derived from
(tuple of strings)

	x_origin

	Value of the X-ORIGIN extension flag (tuple of strings).

Although it’s not official, X-ORIGIN is used in several LDAP server
implementations to indicate the source of the associated schema
element

	
class ldap.schema.models.ObjectClass(schema_element_str=None)

	Arguments:

	schema_element_str

	String containing an ObjectClassDescription

Class attributes:

	oid

	OID assigned to the object class

	names

	All NAMEs of the object class (tuple of strings)

	desc

	Description text (DESC) of the object class (string, or None if missing)

	obsolete

	Integer flag (0 or 1) indicating whether the object class is marked
as OBSOLETE in the schema

	must

	NAMEs or OIDs of all attributes an entry of the object class must have
(tuple of strings)

	may

	NAMEs or OIDs of additional attributes an entry of the object class may
have (tuple of strings)

	kind

	Kind of an object class:
0 = STRUCTURAL,
1 = ABSTRACT,
2 = AUXILIARY

	sup

	NAMEs or OIDs of object classes this object class is derived from
(tuple of strings)

	x_origin

	Value of the X-ORIGIN extension flag (tuple of strings)

Although it’s not official, X-ORIGIN is used in several LDAP server
implementations to indicate the source of the associated schema
element

	
class ldap.schema.models.MatchingRule(schema_element_str=None)

	Arguments:

	schema_element_str

	String containing an MatchingRuleDescription

Class attributes:

	oid

	OID assigned to the matching rule

	names

	All NAMEs of the matching rule (tuple of strings)

	desc

	Description text (DESC) of the matching rule

	obsolete

	Integer flag (0 or 1) indicating whether the matching rule is marked
as OBSOLETE in the schema

	syntax

	OID of the LDAP syntax this matching rule is usable with
(string, or None if missing)

	
class ldap.schema.models.MatchingRuleUse(schema_element_str=None)

	Arguments:

	schema_element_str

	String containing an MatchingRuleUseDescription

Class attributes:

	oid

	OID of the accompanying matching rule

	names

	All NAMEs of the matching rule (tuple of strings)

	desc

	Description text (DESC) of the matching rule (string, or None if missing)

	obsolete

	Integer flag (0 or 1) indicating whether the matching rule is marked
as OBSOLETE in the schema

	applies

	NAMEs or OIDs of attribute types for which this matching rule is used
(tuple of strings)

	
class ldap.schema.models.DITContentRule(schema_element_str=None)

	Arguments:

	schema_element_str

	String containing an DITContentRuleDescription

Class attributes:

	oid

	OID of the accompanying structural object class

	names

	All NAMEs of the DIT content rule (tuple of strings)

	desc

	Description text (DESC) of the DIT content rule
(string, or None if missing)

	obsolete

	Integer flag (0 or 1) indicating whether the DIT content rule is marked
as OBSOLETE in the schema

	aux

	NAMEs or OIDs of all auxiliary object classes usable in an entry of the
object class (tuple of strings)

	must

	NAMEs or OIDs of all attributes an entry of the object class must
have, which may extend the list of required attributes of the object
classes of an entry.
(tuple of strings)

	may

	NAMEs or OIDs of additional attributes an entry of the object class may
have. which may extend the list of optional attributes of the object
classes of an entry.
(tuple of strings)

	nots

	NAMEs or OIDs of attributes which may not be present in an entry of the
object class. (tuple of strings)

	
class ldap.schema.models.NameForm(schema_element_str=None)

	Arguments:

	schema_element_str

	String containing an NameFormDescription

Class attributes:

	oid

	OID of the name form

	names

	All NAMEs of the name form (tuple of strings)

	desc

	Description text (DESC) of the name form (string, or None if missing)

	obsolete

	Integer flag (0 or 1) indicating whether the name form is marked
as OBSOLETE in the schema

	form

	NAMEs or OIDs of associated name forms (tuple of strings)

	oc

	NAME or OID of structural object classes this name form
is usable with (string)

	must

	NAMEs or OIDs of all attributes an RDN must contain (tuple of strings)

	may

	NAMEs or OIDs of additional attributes an RDN may contain
(tuple of strings)

	
class ldap.schema.models.DITStructureRule(schema_element_str=None)

	Arguments:

	schema_element_str

	String containing an DITStructureRuleDescription

Class attributes:

	ruleid

	rule ID of the DIT structure rule (only locally unique)

	names

	All NAMEs of the DIT structure rule (tuple of strings)

	desc

	Description text (DESC) of the DIT structure rule
(string, or None if missing)

	obsolete

	Integer flag (0 or 1) indicating whether the DIT content rule is marked
as OBSOLETE in the schema

	form

	NAMEs or OIDs of associated name forms (tuple of strings)

	sup

	NAMEs or OIDs of allowed structural object classes
of superior entries in the DIT (tuple of strings)

Examples for ldap.schema

import ldap.schema

ldap.syncrepl Implementation of a syncrepl consumer

See also

RFC 4533 [https://tools.ietf.org/html/rfc4533.html] - Lightweight Directory Access Protocol (v3): Content Synchronization Operation

This requires pyasn1 and pyasn1_modules to be installed.

Classes

This module defines the following classes:

	
class ldap.syncrepl.SyncreplConsumer

	SyncreplConsumer - LDAP syncrepl consumer object.

	
syncrepl_delete(uuids)

	Called by syncrepl_poll() to delete entries. A list
of UUIDs of the entries to be deleted is given in the
uuids parameter.

	
syncrepl_entry(dn, attrs, uuid)

	Called by syncrepl_poll() for any added or modified entries.

The provided uuid is used to identify the provided entry in
any future modification (including dn modification), deletion,
and presentation operations.

	
syncrepl_get_cookie()

	Called by syncrepl_search() to retrieve the cookie stored by syncrepl_set_cookie()

	
syncrepl_poll(msgid=-1, timeout=None, all=0)

	polls for and processes responses to the syncrepl_search() operation.
Returns False when operation finishes, True if it is in progress, or
raises an exception on error.

If timeout is specified, raises ldap.TIMEOUT in the event of a timeout.

If all is set to a nonzero value, poll() will return only when finished
or when an exception is raised.

	
syncrepl_present(uuids, refreshDeletes=False)

	Called by syncrepl_poll() whenever entry UUIDs are presented to the client.
syncrepl_present() is given a list of entry UUIDs (uuids) and a flag
(refreshDeletes) which indicates whether the server explicitly deleted
non-present entries during the refresh operation.

If called with a list of uuids, the syncrepl_present() implementation
should record those uuids as present in the directory.

If called with uuids set to None and refreshDeletes set to False,
syncrepl_present() should delete all non-present entries from the local
mirror, and reset the list of recorded uuids.

If called with uuids set to None and refreshDeletes set to True,
syncrepl_present() should reset the list of recorded uuids, without
deleting any entries.

	
syncrepl_refreshdone()

	Called by syncrepl_poll() between refresh and persist phase.

It indicates that initial synchronization is done and persist phase
follows.

	
syncrepl_search(base, scope, mode='refreshOnly', cookie=None, **search_args)

	Starts syncrepl search operation.

base, scope, and search_args are passed along to
self.search_ext unmodified (aside from adding a Sync
Request control to any serverctrls provided).

mode provides syncrepl mode. Can be ‘refreshOnly’
to finish after synchronization, or
‘refreshAndPersist’ to persist (continue to
receive updates) after synchronization.

cookie: an opaque value representing the replication
state of the client. Subclasses should override
the syncrepl_set_cookie() and syncrepl_get_cookie()
methods to store the cookie appropriately, rather than
passing it.

Only a single syncrepl search may be active on a SyncreplConsumer
object. Multiple concurrent syncrepl searches require multiple
separate SyncreplConsumer objects and thus multiple connections
(LDAPObject instances).

	
syncrepl_set_cookie(cookie)

	Called by syncrepl_poll() to store a new cookie provided by the server.

ldap.sasl SASL Authentication Methods

This module implements various authentication methods for SASL bind.

See also

RFC 4422 [https://tools.ietf.org/html/rfc4422.html] - Simple Authentication and Security Layer (SASL)
RFC 4513 [https://tools.ietf.org/html/rfc4513.html] - Lightweight Directory Access Protocol (LDAP): Authentication Methods and Security Mechanisms

Constants

	
ldap.sasl.CB_USER

	

	
ldap.sasl.CB_AUTHNAME

	

	
ldap.sasl.CB_LANGUAGE

	

	
ldap.sasl.CB_PASS

	

	
ldap.sasl.CB_ECHOPROMPT

	

	
ldap.sasl.CB_NOECHOPROMPT

	

	
ldap.sasl.CB_GETREALM

	

Classes

	
class ldap.sasl.sasl(cb_value_dict, mech)

	This class handles SASL interactions for authentication.
If an instance of this class is passed to ldap’s sasl_bind_s()
method, the library will call its callback() method. For
specific SASL authentication mechanisms, this method can be
overridden

This class is used with ldap.LDAPObject.sasl_interactive_bind_s().

	
callback(cb_id, challenge, prompt, defresult)

	The callback method will be called by the sasl_bind_s()
method several times. Each time it will provide the id, which
tells us what kind of information is requested (the CB_*
constants above). The challenge might be a short (English) text
or some binary string, from which the return value is calculated.
The prompt argument is always a human-readable description string;
The defresult is a default value provided by the sasl library

Currently, we do not use the challenge and prompt information, and
return only information which is stored in the self.cb_value_dict
cb_value_dictionary. Note that the current callback interface is not very
useful for writing generic sasl GUIs, which would need to know all
the questions to ask, before the answers are returned to the sasl
lib (in contrast to one question at a time).

Unicode strings are always converted to bytes.

	
class ldap.sasl.cram_md5(authc_id, password, authz_id='')

	This class handles SASL CRAM-MD5 authentication.

	
class ldap.sasl.digest_md5(authc_id, password, authz_id='')

	This class handles SASL DIGEST-MD5 authentication.

	
class ldap.sasl.gssapi(authz_id='')

	This class handles SASL GSSAPI (i.e. Kerberos V) authentication.

You might consider using convenience method ldap.LDAPObject.sasl_gssapi_bind_s().

	
class ldap.sasl.external(authz_id='')

	This class handles SASL EXTERNAL authentication
(i.e. X.509 client certificate)

You might consider using convenience method ldap.LDAPObject.sasl_external_bind_s().

Examples for ldap.sasl

This example connects to an OpenLDAP server via LDAP over IPC
(see draft-chu-ldap-ldapi [https://tools.ietf.org/html/draft-chu-ldap-ldapi])
and sends a SASL external bind request.

import ldap, ldap.sasl, urllib

ldapi_path = '/tmp/openldap-socket'
ldap_conn = ldap.initialize(
 'ldapi://%s' % (
 urllib.quote_plus(ldapi_path)
)
)
Send SASL bind request for mechanism EXTERNAL
ldap_conn.sasl_non_interactive_bind_s('EXTERNAL')
Find out the SASL Authorization Identity
print ldap_conn.whoami_s()

ldif LDIF parser and generator

This module parses and generates LDAP data in the format LDIF. It is
implemented in pure Python and does not rely on any non-standard modules.
Therefore it can be used stand-alone without the rest of the python-ldap
package.

See also

RFC 2849 [https://tools.ietf.org/html/rfc2849.html] - The LDAP Data Interchange Format (LDIF) - Technical Specification

Functions

	
ldif.CreateLDIF(dn, record, base64_attrs=None, cols=76)

	Create LDIF single formatted record including trailing empty line.
This is a compatibility function.

	dn

	string-representation of distinguished name

	record

	Either a dictionary holding the LDAP entry {attrtype:record}
or a list with a modify list like for LDAPObject.modify().

	base64_attrs

	list of attribute types to be base64-encoded in any case

	cols

	Specifies how many columns a line may have before it’s
folded into many lines.

Deprecated since version 3.0: ldif.CreateLDIF() is deprecated. It will be removed in version 3.1.
Use ldif.LDIFWriter.unparse() with a file or io.StringIO
instead.

	
ldif.ParseLDIF(f, ignore_attrs=None, maxentries=0)

	Parse LDIF records read from file.
This is a compatibility function.

Deprecated since version 3.0: ldif.ParseLDIF() is deprecated. It will be removed in version 3.1.
Use the all_records attribute of the returned value of
ldif.LDIFRecordList.parse() instead.

Classes

	
class ldif.LDIFWriter(output_file, base64_attrs=None, cols=76, line_sep='n')

	Write LDIF entry or change records to file object
Copy LDIF input to a file output object containing all data retrieved
via URLs

	
unparse(dn, record)

	
	dn

	string-representation of distinguished name

	record

	Either a dictionary holding the LDAP entry {attrtype:record}
or a list with a modify list like for LDAPObject.modify().

	
class ldif.LDIFParser(input_file, ignored_attr_types=None, max_entries=0, process_url_schemes=None, line_sep='n')

	Base class for a LDIF parser. Applications should sub-class this
class and override method handle() to implement something meaningful.

Public class attributes:

	records_read

	Counter for records processed so far

	
handle(dn, entry)

	Process a single content LDIF record. This method should be
implemented by applications using LDIFParser.

	
handle_modify(dn, modops, controls=None)

	Process a single LDIF record representing a single modify operation.
This method should be implemented by applications using LDIFParser.

	
parse()

	Invokes LDIFParser.parse_entry_records() for backward compatibility

	
parse_entry_records()

	Continuously read and parse LDIF entry records

	
class ldif.LDIFRecordList(input_file, ignored_attr_types=None, max_entries=0, process_url_schemes=None)

	Collect all records of a LDIF file. It can be a memory hog!

Records are stored in all_records as a single list
of 2-tuples (dn, entry), after calling parse().

	
all_records = None

	List storing parsed records.

	
handle(dn, entry)

	Append a single record to the list of all records (all_records).

	
handle_modify(dn, modops, controls=None)

	Process a single LDIF record representing a single modify operation.
This method should be implemented by applications using LDIFParser.

	
class ldif.LDIFCopy(input_file, output_file, ignored_attr_types=None, max_entries=0, process_url_schemes=None, base64_attrs=None, cols=76, line_sep='n')

	Copy LDIF input to LDIF output containing all data retrieved
via URLs

	
handle(dn, entry)

	Write single LDIF record to output file.

Example

The following example demonstrates how to write LDIF output
of an LDAP entry with ldif module.

>>> import sys, ldif
>>> entry={'objectClass': [b'top', b'person'], 'cn': [b'Michael Stroeder'], 'sn': [b'Stroeder']}
>>> dn='cn=Michael Stroeder,ou=Test'
>>> ldif_writer=ldif.LDIFWriter(sys.stdout)
>>> ldif_writer.unparse(dn, entry)
dn: cn=Michael Stroeder,ou=Test
cn: Michael Stroeder
objectClass: top
objectClass: person
sn: Stroeder

The following example demonstrates how to parse an LDIF file
with ldif module, skip some entries and write the result to stdout.

import sys
from ldif import LDIFParser,LDIFWriter

SKIP_DN = ["uid=foo,ou=People,dc=example,dc=com",
 "uid=bar,ou=People,dc=example,dc=com"]

class MyLDIF(LDIFParser):
 def __init__(self,input,output):
 LDIFParser.__init__(self,input)
 self.writer = LDIFWriter(output)

 def handle(self,dn,entry):
 if dn in SKIP_DN:
 return
 self.writer.unparse(dn,entry)

parser = MyLDIF(open("input.ldif", 'rb'), sys.stdout)
parser.parse()

ldapurl LDAP URL handling

This module parses and generates LDAP URLs. It is implemented in pure Python
and does not rely on any non-standard modules. Therefore it can be used stand-
alone without the rest of the python-ldap package.

See also

RFC 4516 [https://tools.ietf.org/html/rfc4516.html] - The LDAP URL Format

Constants

The ldapurl module exports the following constants:

	
ldapurl.SEARCH_SCOPE

	This dictionary maps a search scope string identifier to the corresponding
integer value used with search operations in ldap.

	
ldapurl.SEARCH_SCOPE_STR

	This dictionary is the inverse to SEARCH_SCOPE. It maps a search scope
integer value to the corresponding string identifier used in a LDAP URL string
representation.

	
ldapurl.LDAP_SCOPE_BASE

	

	
ldapurl.LDAP_SCOPE_ONELEVEL

	

	
ldapurl.LDAP_SCOPE_SUBTREE

	

Functions

	
ldapurl.isLDAPUrl(s)

	Returns True if s is a LDAP URL, else False

	
ldapurl.ldapUrlEscape(s)

	Returns URL encoding of string s

Classes

LDAP URLs

A LDAPUrl object represents a complete LDAP URL.

	
class ldapurl.LDAPUrl(ldapUrl=None, urlscheme='ldap', hostport='', dn='', attrs=None, scope=None, filterstr=None, extensions=None, who=None, cred=None)

	Class for parsing and unparsing LDAP URLs
as described in RFC 4516.

	Usable class attributes:

	
	urlscheme

	URL scheme (either ldap, ldaps or ldapi)

	hostport

	LDAP host (default ‘’)

	dn

	String holding distinguished name (default ‘’)

	attrs

	list of attribute types (default None)

	scope

	integer search scope for ldap-module

	filterstr

	String representation of LDAP Search Filters
(see RFC 4515)

	extensions

	Dictionary used as extensions store

	who

	Maps automagically to bindname LDAP URL extension

	cred

	Maps automagically to X-BINDPW LDAP URL extension

Changed in version 3.4.0: The urlscheme is now case insensitive and always converted to lower
case. LDAP://localhost is equivalent to ldap://localhost.

	
applyDefaults(defaults)

	Apply defaults to all class attributes which are None.

	defaults

	Dictionary containing a mapping from class attributes
to default values

	
htmlHREF(urlPrefix='', hrefText=None, hrefTarget=None)

	Returns a string with HTML link for this LDAP URL.

	urlPrefix

	Prefix before LDAP URL (e.g. for addressing another web-based client)

	hrefText

	link text/description

	hrefTarget

	string added as link target attribute

	
initializeUrl()

	Returns LDAP URL suitable to be passed to ldap.initialize()

	
unparse()

	Returns LDAP URL depending on class attributes set.

LDAP URL extensions

A LDAPUrlExtension object represents a single LDAP URL extension
whereas LDAPUrlExtensions represents a list of LDAP URL extensions.

	
class ldapurl.LDAPUrlExtension(extensionStr=None, critical=0, extype=None, exvalue=None)

	Class for parsing and unparsing LDAP URL extensions
as described in RFC 4516.

	Usable class attributes:

	
	critical

	Boolean integer marking the extension as critical

	extype

	Type of extension

	exvalue

	Value of extension

	
class ldapurl.LDAPUrlExtensions(default=None)

	Models a collection of LDAP URL extensions as
a mapping type

Example

Important security advice:
For security reasons you should not specify passwords in LDAP URLs
unless you really know what you are doing.

The following example demonstrates how to parse a LDAP URL
with ldapurl module.

>>> import ldapurl
>>> ldap_url = ldapurl.LDAPUrl('ldap://localhost:1389/dc=stroeder,dc=com?cn,mail???bindname=cn=Michael%2cdc=stroeder%2cdc=com,X-BINDPW=secret')
>>> # Using the parsed LDAP URL by reading the class attributes
>>> ldap_url.dn
'dc=stroeder,dc=com'
>>> ldap_url.hostport
'localhost:1389'
>>> ldap_url.attrs
['cn','mail']
>>> ldap_url.filterstr
'(objectclass=*)'
>>> ldap_url.who
'cn=Michael,dc=stroeder,dc=com'
>>> ldap_url.cred
'secret'
>>> ldap_url.scope
0

The following example demonstrates how to generate a LDAP URL
with module{ldapurl} module.

>>> import ldapurl
>>> ldap_url = ldapurl.LDAPUrl(hostport='localhost:1389',dn='dc=stroeder,dc=com',attrs=['cn','mail'],who='cn=Michael,dc=stroeder,dc=com',cred='secret')
>>> ldap_url.unparse()
'ldap://localhost:1389/dc=stroeder,dc=com?cn,mail?base?(objectclass=*)?bindname=cn=Michael%2Cdc=stroeder%2Cdc=com,X-BINDPW=secret'

slapdtest Spawning test instances of OpenLDAP’s slapd server

The module is used for testing python-ldap itself but can be used for
automatically testing any OpenLDAP-based configuration setup.

This module is pure Python and does not rely on any non-standard modules.
Therefore it can be used stand-alone without the rest of the python-ldap
package.

Test fixtures for the popular pytest framework are developed in an external project, pytest-ldap [https://pypi.org/project/pytest-ldap/].

Functions

Classes

	
class slapdtest.SlapdObject

	Controller class for a slapd instance, OpenLDAP’s server.

This class creates a temporary data store for slapd, runs it
listening on a private Unix domain socket and TCP port,
and initializes it with a top-level entry and the root user.

When a reference to an instance of this class is lost, the slapd
server is shut down.

An instance can be used as a context manager. When exiting the context
manager, the slapd server is shut down and the temporary data store is
removed.

	Parameters

	openldap_schema_files – A list of schema names or schema paths to
load at startup. By default this only contains core.

Changed in version 3.1: Added context manager functionality

	
gen_config()

	generates a slapd.conf and returns it as one string

for generating specific static configuration files you have to
override this method

	
ldapadd(ldif, extra_args=None)

	Runs ldapadd on this slapd instance, passing it the ldif content

	
ldapdelete(dn, recursive=False, extra_args=None)

	Runs ldapdelete on this slapd instance, deleting ‘dn’

	
ldapmodify(ldif, extra_args=None)

	Runs ldapadd on this slapd instance, passing it the ldif content

	
ldapwhoami(extra_args=None)

	Runs ldapwhoami on this slapd instance

	
restart()

	Restarts the slapd server with same data

	
setup_rundir()

	creates rundir structure

for setting up a custom directory structure you have to override
this method

	
slapadd(ldif, extra_args=None)

	Runs slapadd on this slapd instance, passing it the ldif content

	
start()

	Starts the slapd server process running, and waits for it to come up.

	
stop()

	Stops the slapd server, and waits for it to terminate and cleans up

	
wait()

	Waits for the slapd process to terminate by itself.

	
class slapdtest.SlapdTestCase(methodName='runTest')

	test class which also clones or initializes a running slapd

	
server_class

	alias of SlapdObject

	
classmethod setUpClass()

	Hook method for setting up class fixture before running tests in the class.

	
classmethod tearDownClass()

	Hook method for deconstructing the class fixture after running all tests in the class.

Third-party documentation

The following documents referenced are not written by python-ldap project
members. Therefore some information might be outdated or links might be broken.

Python LDAP Applications articles by Matt Butcher

	Part 1 - Installing and Configuring the Python-LDAP Library and Binding to an LDAP Directory [https://www.packtpub.com/article/installing-and-configuring-the-python-ldap-library-and-binding-to-an-ldap-directory]

This also covers SASL.

	Part 2 - LDAP Operations [https://www.packtpub.com/article/python-ldap-applications-ldap-opearations]

	Part 3 - More LDAP Operations and the LDAP URL Library [https://www.packtpub.com/article/python-ldap-applications-more-ldap-operations-and-the-ldap-url-library]

	Part 4 - LDAP Schema [https://www.packtpub.com/article/python-ldap-applications-ldap-schema]

Gee, someone waded through the badly documented mysteries of module
ldap.schema.

LDAP Programming in Python [https://www.linuxjournal.com/article/6988]

Another article for getting started with python-ldap.

RFC 1823 [https://tools.ietf.org/html/rfc1823]

The LDAP Application Program Interface, mainly for LDAPv2.

LDAPEXT draft [https://tools.ietf.org/html/draft-ietf-ldapext-ldap-c-api]

The Internet draft of the discontinued IETF working group LDAPEXT is of
interest here since the OpenLDAP 2 libs implement this (expired) draft.

OpenLDAP [https://www.openldap.org/]

It’s worth to have a look at the
manual pages [https://www.openldap.org/software/man.cgi?query=ldap] and the
Developer’s FAQ [https://www.openldap.org/faq/data/cache/4.html].

VSLDAP [https://www.opengroup.org/openbrand/testing/checklist/guide/config_base.html]

VSLDAP Interoperability Test Suite.

Contributing to python-ldap

Thank you for your interest in python-ldap!
If you’d like to contribute (be it code, documentation, maintenance effort,
or anything else), this guide is for you.

Communication

Always keep in mind that python-ldap is developed and maintained by volunteers.
We’re happy to share our work, and to work with you to make the library better,
but (until you pay someone), there’s obligation to provide assistance.

So, keep it friendly, respectful, and supportive!

Mailing list

Discussion about the use and future of python-ldap occurs in
the python-ldap@python.org mailing list.

It’s also the channel to use if documentation (including this guide) is not
clear to you.
Do try searching around before you ask on the list, though!

You can subscribe or unsubscribe [https://mail.python.org/mailman/listinfo/python-ldap] to this list or browse the list archive [https://mail.python.org/pipermail/python-ldap/].

Issues

Please report bugs, missing features and other issues to the bug tracker [https://github.com/python-ldap/python-ldap/issues]
at GitHub. You will need a GitHub account for that.

If you prefer not to open a GitHub account, you’re always welcome to use the
mailing list.

Security Contact

If you found a security issue that should not be discussed publicly,
please e-mail the maintainer at pviktori@redhat.com.
If required, write to coordinate a more secure channel.

All other communication should be public.

Contributing code

If you’re used to open-source Python development with Git, here’s the gist:

	git clone https://github.com/python-ldap/python-ldap

	Use GitHub for the bug tracker [https://github.com/python-ldap/python-ldap/issues] and pull requests.

	Run tests with tox [https://tox.readthedocs.io/en/latest/]; ignore Python interpreters you don’t have locally.

Or, if you prefer to avoid closed-source services:

	git clone https://pagure.io/python-ldap

	Send bug reports and patches to the mailing list.

	Run tests with tox [https://tox.readthedocs.io/en/latest/]; ignore Python interpreters you don’t have locally.

	Read the documentation directly at Read the Docs [https://python-ldap.readthedocs.io/].

If you’re new to some aspect of the project, you’re welcome to use (or adapt)
our sample workflow.

Additional tests and scripts

We use several specialized tools for debugging and maintenance.

Make targets

Make targets currently use the python3 executable.
Specify a different one using, for example:

make PYTHON=/usr/local/bin/python

Notable targets are:

	make autoformat

	Automatically re-formats C and Python code to conform to Python style
guides (PEP 7 [https://www.python.org/dev/peps/pep-0007/] and PEP 8 [https://www.python.org/dev/peps/pep-0008/]).
Note that no backups are made – please commit any other changes before
using this target.

Requires the indent program and the black Python module.

	make lcov lcov-open

	Generate and view test coverage for C code.
Requires LCOV [https://github.com/linux-test-project/lcov].

	make scan-build

	Run static analysis. Requires clang.

	make valgrind

	Run Valgrind [http://valgrind.org/] to check for memory leaks. Requires valgrind and
a Python suppression file, which you can specify as PYTHON_SUPP, e.g.:

make valgrind PYTHON_SUPP=/your/path/to/valgrind-python.supp

The suppression file is Misc/valgrind-python.supp in the Python
source distribution, and it’s frequently packaged together with
Python development headers.

Reference leak tests

Reference leak tests require a pydebug build of CPython and pytest [https://docs.pytest.org/en/latest/] with
pytest-leaks [https://pypi.org/project/pytest-leaks/] plugin. A pydebug build has a global reference counter, which
keeps track of all reference increments and decrements. The leak plugin runs
each test multiple times and checks if the reference count increases.

Download and compile the pydebug build:

$ curl -O https://www.python.org/ftp/python/3.6.3/Python-3.6.3.tar.xz
$ tar xJf Python-3.6.3.tar.xz
$ cd Python-3.6.3
$./configure --with-pydebug
$ make

Create a virtual environment with the pydebug build:

$./python -m venv /tmp/refleak
$ /tmp/refleak/bin/pip install pytest pytest-leaks

Run reference leak tests:

$ cd path/to/python-ldap
$ /tmp/refleak/bin/pip install --upgrade .
$ /tmp/refleak/bin/pytest -v -R:

Run /tmp/refleak/bin/pip install --upgrade . every time a file outside
of Tests/ is modified.

Instructions for core committers

If you have the authority (and responsibility) of merging changes from others,
remember:

	All code changes need to be reviewed by someone other than the author.

	Tests must always pass. New features without tests shall not pass review.

	Make sure commit messages don’t use GitHub-specific link syntax.
Use the full URL, e.g. https://github.com/python-ldap/python-ldap/issues/50
instead of #20.

	Exception: it’s fine to use the short form in the summary line of a merge
commit, if the full URL appears later.

	It’s OK to use shortcuts in GitHub discussions, where they are not
hashed into immutable history.

	Make a merge commit if the contribution contains several well-isolated
separate commits with good descriptions. Use squash-and-merge (or
fast-forward from a command line) for all other cases.

	It’s OK to push small changes into a pull request. If you do this, document
what you have done (so the contributor can learn for the future), and get
their ACK before merging.

	When squashing, do edit commit messages to add references to the pull request
and relevant discussions/issues, and to conform to Git best practices.

	Consider making the summary line suitable for the CHANGES document,
and starting it with a prefix like Lib: or Tests:.

	Push to Pagure as well.

If you have good reason to break the “rules”, go ahead and break them,
but mention why.

Instructions for release managers

If you are tasked with releasing python-ldap, remember to:

	Bump all instances of the version number.

	Go through all changes since last version, and add them to CHANGES.

	Run Additional tests and scripts as appropriate, fix any regressions.

	Change the release date in CHANGES.

	Update __version__ tags where appropriate (each module ldap,
ldif, ldapurl, slapdtest has its own copy).

	Merge all that (using pull requests).

	Run python setup.py sdist, and smoke-test the resulting package
(install in a clean virtual environment, import ldap).

	Create GPG-signed Git tag: git tag -s python-ldap-{version}.
Push it to GitHub and Pagure.

	Release the sdist on PyPI.

	Announce the release on the mailing list.
Mention the Git hash.

	Add the release’s log from CHANGES on the GitHub release page [https://github.com/python-ldap/python-ldap/releases].

	Check that python-ldap.org shows the latest version; if not, adjust
things at readthedocs.org

Sample workflow for python-ldap development

This document will guide you through the process of contributing a change
to python-ldap.

We assume that, as a user of python-ldap, you’re not new to software
development in general, so these instructions are terse.
If you need additional detail, please do ask on the mailing list.

Note

The following instructions are for Linux.
If you can translate them to another system, please contribute your
translation!

Install Git [https://git-scm.com/], tox [https://tox.readthedocs.io/en/latest/] and the Build prerequisites.

Clone the repository:

$ git clone https://github.com/python-ldap/python-ldap
$ cd python-ldap

Create a virtual environment [https://docs.python.org/3/library/venv.html#module-venv] to ensure you in-development
python-ldap won’t affect the rest of your system:

$ python3 -m venv __venv__

Activate the virtual environment:

$ source __venv__/bin/activate

Install python-ldap to it in editable mode [https://pip.pypa.io/en/stable/reference/pip_install/#editable-installs]:

(__venv__)$ python -m pip install -e .

This way, importing a Python module from python-ldap will directly
use the code from your source tree.
If you change C code, you will still need to recompile
(using the pip install command again).

Change the code as desired.

To run tests, install and run tox [https://tox.readthedocs.io/en/latest/]:

(__venv__)$ python -m pip install tox
(__venv__)$ tox --skip-missing-interpreters

This will run tests on all supported versions of Python that you have
installed, skipping the ones you don’t.
To run a subset of test environments, run for example:

(__venv__)$ tox -e py36,py39

In addition to pyXY environments, we have extra environments
for checking things independent of the Python version:

	doc checks syntax and spelling of the documentation

	coverage-report generates a test coverage report for Python code.
It must be used last, e.g. tox -e py36,py39,coverage-report.

	py3-nosasltls check functionality without
SASL and TLS bindings compiled in.

When your change is ready, commit to Git, and submit a pull request on GitHub.
You can take a look at the Instructions for core committers to see what we are looking
for in a pull request.

If you don’t want to open a GitHub account, please send patches as attachments
to the python-ldap mailing list.

python-ldap FAQ

Project

Q: Is python-ldap yet another abandon-ware project?

A1: “Jump on in.”

A2: “Jump into the C ;-)”

A3: see file CHANGES in source distribution
or repository [https://github.com/python-ldap/python-ldap/blob/master/CHANGES].

Usage

Q: Does it work with Python 3?

A0: Yes, from 3.0 on.

A1. For earlier versions, there’s pyldap [https://pypi.org/project/pyldap/], an independent fork
now merged into python-ldap.

Q: Does it work with Python 2.7? (1.5|2.0|2.1|2.2|2.3|2.4|2.5|2.6|2.7)?

A: No. Old versions of python-ldap are still available from PyPI, though.

Q: My code imports module _ldap.
That used to work, but after an upgrade it does not work anymore. Why?

	A: Despite some outdated programming examples, the extension module

	_ldap MUST NOT be imported directly, unless you really know what
you’re doing (e.g. for internal regression testing).

Import ldap instead, which is a Python wrapper around _ldap
providing the full functionality.

Q: My script bound to MS Active Directory but a a search operation results
in the exception ldap.OPERATIONS_ERROR with the diagnostic message text
“In order to perform this operation a successful bind must be completed on the
connection.” Alternatively, a Samba 4 AD returns the diagnostic message
“Operation unavailable without authentication”. What’s happening here?

A: When searching from the domain level, MS AD returns referrals (search continuations)
for some objects to indicate to the client where to look for these objects.
Client-chasing of referrals is a broken concept, since LDAPv3 does not specify
which credentials to use when chasing the referral. Windows clients are supposed
to simply use their Windows credentials, but this does not work in general when
chasing referrals received from and pointing to arbitrary LDAP servers.

Therefore, per default, libldap automatically chases the referrals
internally with an anonymous access which fails with MS AD.

So, the best thing to do is to switch this behaviour off:

l = ldap.initialize('ldap://foobar')
l.set_option(ldap.OPT_REFERRALS,0)

Note that setting the above option does NOT prevent search continuations
from being returned, rather only that libldap won’t attempt to resolve
referrals.

Q: Why am I seeing a ldap.SUCCESS traceback as output?

A: Most likely, you are using one of the non-synchronous calls, and probably
mean to be using a synchronous call
(see detailed explanation in Sending LDAP requests).

Q: Can I use LDAPv2 via python-ldap?

A: Yes, by explicitly setting the class attribute
protocol_version.

You should not do that nowadays since
LDAPv2 is considered historic [https://tools.ietf.org/html/rfc3494]
since many years.

Q: My TLS settings are ignored/TLS isn’t working?

A: Make sure you call set_option(ldap.OPT_X_TLS_NEWCTX, 0)
after changing any of the OPT_X_TLS_* options.

Installing

Q: Does it work with Windows 32?

A: Yes. You can find links to unofficial pre-compiled packages
for Windows on the Installing python-ldap page.

Q: Can python-ldap be built against OpenLDAP 2.3 libs or older?

A: No.
The needed minimal version of OpenLDAP is documented in Build prerequisites.
Patched builds of python-ldap linked to older libs are not supported by the
python-ldap project.

Q: During build there are warning messages displayed
telling Lib/ldap.py and Lib/ldap/schema.py are not found:

warning: build_py: file Lib/ldap.py (for module ldap) not found
warning: build_py: file Lib/ldap/schema.py (for module ldap.schema) not found

A: ldap and ldap.schema are both module packages
(directories containing various sub-modules).
The messages above are falsely produced by DistUtils.
Don’t worry about it.

Q: What’s the correct way to install on macOS?

A:

xcode-select --install
pip install python-ldap \
 --global-option=build_ext \
 --global-option="-I$(xcrun --show-sdk-path)/usr/include/sasl"

Q: While importing module ldap, some shared lib files are not found.
The error message looks similar to this:

ImportError: ld.so.1: /usr/local/bin/python: fatal: liblber.so.2: open failed: No such file or directory

A1: You need to make sure that the path to liblber.so.2 and
libldap.so.2 is in your LD_LIBRARY_PATH environment variable.

A2: Alternatively, if you’re on Linux, you can add the path to
liblber.so.2 and libldap.so.2 to /etc/ld.so.conf
and invoke the command ldconfig afterwards.

Historic

Q: Can python-ldap 2.x be built against Netscape, Mozilla or Novell libs?

A: Nope.

Q: My binary version of python-ldap was build with LDAP libs 3.3.
But the python-ldap docs say LDAP libs 2.x are needed. I’m confused!

	Short answer:

	See answer above and the Installing python-ldap page for
a more recent version.

	Long answer:

	E.g. some Win32 DLLs floating around for download are based on
the old Umich LDAP code which is not maintained anymore for
many years! Last Umich 3.3 release was 1997 if I remember correctly.

The OpenLDAP project took over the Umich code and started releasing
OpenLDAP 1.x series mainly fixing bugs and doing some improvements
to the database backend. Still, only LDAPv2 was supported at server
and client side. (Many commercial vendors also derived their products
from the Umich code.)

OpenLDAP 2.x is a full-fledged LDAPv3 implementation. It has
its roots in Umich code but has many more features/improvements.

Q: While importing module ldap, there are undefined references reported.
The error message looks similar to this:

ImportError: /usr/local/lib/libldap.so.2: undefined symbol: res_query

A: Especially on older Linux systems, you might have to explicitly link
against libresolv.

Tweak setup.cfg to contain this line:

libs = lber ldap resolv

 Python Module Index

 l |
 s

 		 	

 		
 l	

 	[image: -]
 	
 ldap (Posix, Windows)	
 Access to an underlying LDAP C library.

 	
 	
 ldap.asyncsearch	
 Framework for stream-processing of large search results.

 	
 	
 ldap.controls	
 High-level access to LDAPv3 extended controls.

 	
 	
 ldap.controls.libldap	
 request and response controls implemented by OpenLDAP libs

 	
 	
 ldap.controls.ppolicy	
 passworld policies

 	
 	
 ldap.controls.psearch	
 request and response controls for LDAP persistent search

 	
 	
 ldap.controls.readentry	
 read entryrequest and response controls

 	
 	
 ldap.controls.sessiontrack	
 request control for session tracking

 	
 	
 ldap.controls.simple	
 simple request and response controls implemented in pure Python

 	
 	
 ldap.dn	
 LDAP Distinguished Name handling.

 	
 	
 ldap.extop	
 High-level access to LDAPv3 extended operations.

 	
 	
 ldap.extop.dds	
 Classes for Dynamic Entries extended operations

 	
 	
 ldap.filter	
 LDAP filter handling.

 	
 	
 ldap.modlist	

 	
 	
 ldap.resiter	
 Generator for stream-processing of large search results.

 	
 	
 ldap.sasl	

 	
 	
 ldap.schema	

 	
 	
 ldap.schema.models	

 	
 	
 ldap.schema.subentry	

 	
 	
 ldap.syncrepl	
 Implementation of a syncrepl consumer

 	
 	
 ldapurl	
 Parses and generates LDAP URLs

 	
 	
 ldif	
 Parses and generates LDIF files

 		 	

 		
 s	

 	
 	
 slapdtest	
 Spawning test instances of OpenLDAP's slapd server

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	abandon() (ldap.LDAPObject method)

 	abandon_ext() (ldap.LDAPObject method)

 	add() (ldap.LDAPObject method)

 	add_ext() (ldap.LDAPObject method)

 	add_ext_s() (ldap.LDAPObject method)

 	add_s() (ldap.LDAPObject method)

 	addModlist() (in module ldap.modlist)

 	ADMINLIMIT_EXCEEDED

 	AFFECTS_MULTIPLE_DSAS

 	afterFirstResult() (ldap.asyncsearch.AsyncSearchHandler method)

 	ALIAS_DEREF_PROBLEM

 	ALIAS_PROBLEM

 	
 	all_records (ldif.LDIFRecordList attribute)

 	allresults() (ldap.resiter.ResultProcessor method)

 	ALREADY_EXISTS

 	applyDefaults() (ldapurl.LDAPUrl method)

 	AssertionControl (class in ldap.controls.libldap)

 	AsyncSearchHandler (class in ldap.asyncsearch)

 	attribute_types() (ldap.schema.models.Entry method)

 	(ldap.schema.subentry.SubSchema method)

 	AttributeType (class in ldap.schema.models)

 	AUTH_UNKNOWN

 	AuthorizationIdentityRequestControl (class in ldap.controls.simple)

 	AuthorizationIdentityResponseControl (class in ldap.controls.simple)

B

 	
 	bind() (ldap.LDAPObject method)

 	bind_s() (ldap.LDAPObject method)

 	
 	BooleanControl (class in ldap.controls.simple)

 	BUSY

C

 	
 	callback() (ldap.sasl.sasl method)

 	cancel() (ldap.LDAPObject method)

 	CB_AUTHNAME (in module ldap.sasl)

 	CB_ECHOPROMPT (in module ldap.sasl)

 	CB_GETREALM (in module ldap.sasl)

 	CB_LANGUAGE (in module ldap.sasl)

 	CB_NOECHOPROMPT (in module ldap.sasl)

 	CB_PASS (in module ldap.sasl)

 	CB_USER (in module ldap.sasl)

 	CLIENT_LOOP

 	compare() (ldap.LDAPObject method)

 	
 	compare_ext() (ldap.LDAPObject method)

 	compare_ext_s() (ldap.LDAPObject method)

 	COMPARE_FALSE

 	compare_s() (ldap.LDAPObject method)

 	COMPARE_TRUE

 	CONFIDENTIALITY_REQUIRED

 	CONNECT_ERROR

 	CONSTRAINT_VIOLATION

 	CONTROL_NOT_FOUND

 	cram_md5 (class in ldap.sasl)

 	CreateLDIF() (in module ldif)

D

 	
 	DecodeControlTuples() (in module ldap.controls)

 	decodeControlValue() (ldap.controls.libldap.SimplePagedResultsControl method)

 	(ldap.controls.ResponseControl method)

 	(ldap.controls.ppolicy.PasswordPolicyControl method)

 	(ldap.controls.psearch.EntryChangeNotificationControl method)

 	(ldap.controls.readentry.ReadEntryControl method)

 	(ldap.controls.simple.AuthorizationIdentityResponseControl method)

 	(ldap.controls.simple.BooleanControl method)

 	(ldap.controls.simple.OctetStringInteger method)

 	decodeResponseValue() (ldap.extop.dds.RefreshResponse method)

 	(ldap.extop.ExtendedResponse method)

 	DECODING_ERROR

 	delete() (ldap.LDAPObject method)

 	delete_ext() (ldap.LDAPObject method)

 	delete_ext_s() (ldap.LDAPObject method)

 	delete_s() (ldap.LDAPObject method)

 	
 	Dict (class in ldap.asyncsearch)

 	digest_md5 (class in ldap.sasl)

 	DITContentRule (class in ldap.schema.models)

 	DITStructureRule (class in ldap.schema.models)

 	dn2str() (in module ldap.dn)

 	DN_FORMAT_AD_CANONICAL (in module ldap)

 	DN_FORMAT_DCE (in module ldap)

 	DN_FORMAT_LDAP (in module ldap)

 	DN_FORMAT_LDAPV2 (in module ldap)

 	DN_FORMAT_LDAPV3 (in module ldap)

 	DN_FORMAT_MASK (in module ldap)

 	DN_FORMAT_UFN (in module ldap)

 	DN_P_NOLEADTRAILSPACES (in module ldap)

 	DN_P_NOSPACEAFTERRDN (in module ldap)

 	DN_PEDANTIC (in module ldap)

 	DN_PRETTY (in module ldap)

 	DN_SKIP (in module ldap)

E

 	
 	encodeControlValue() (ldap.controls.libldap.AssertionControl method)

 	(ldap.controls.RequestControl method)

 	(ldap.controls.libldap.MatchedValuesControl method)

 	(ldap.controls.libldap.SimplePagedResultsControl method)

 	(ldap.controls.psearch.PersistentSearchControl method)

 	(ldap.controls.readentry.ReadEntryControl method)

 	(ldap.controls.sessiontrack.SessionTrackingControl method)

 	(ldap.controls.simple.BooleanControl method)

 	(ldap.controls.simple.OctetStringInteger method)

 	(ldap.controls.simple.ValueLessRequestControl method)

 	encodedRequestValue() (ldap.extop.dds.RefreshRequest method)

 	(ldap.extop.ExtendedRequest method)

 	ENCODING_ERROR

 	Entry (class in ldap.schema.models)

 	
 	EntryChangeNotificationControl (class in ldap.controls.psearch)

 	error (ldap.controls.ppolicy.PasswordPolicyControl attribute)

 	escape_dn_chars() (in module ldap.dn)

 	escape_filter_chars() (in module ldap.filter)

 	explode_dn() (in module ldap.dn)

 	explode_rdn() (in module ldap.dn)

 	ExtendedRequest (class in ldap.extop)

 	ExtendedResponse (class in ldap.extop)

 	external (class in ldap.sasl)

 	extop() (ldap.LDAPObject method)

 	extop_result() (ldap.LDAPObject method)

 	extop_s() (ldap.LDAPObject method)

 	extra_compile_args (built-in variable)

 	extra_objects (built-in variable)

F

 	
 	FILTER_ERROR

 	
 	filter_format() (in module ldap.filter)

G

 	
 	gen_config() (slapdtest.SlapdObject method)

 	get_applicable_aux_classes() (ldap.schema.subentry.SubSchema method)

 	get_inheritedattr() (ldap.schema.subentry.SubSchema method)

 	get_inheritedobj() (ldap.schema.subentry.SubSchema method)

 	get_obj() (ldap.schema.subentry.SubSchema method)

 	get_option() (in module ldap)

 	(ldap.LDAPObject method)

 	
 	get_structural_oc() (ldap.schema.subentry.SubSchema method)

 	get_syntax() (ldap.schema.subentry.SubSchema method)

 	GetEffectiveRightsControl (class in ldap.controls.simple)

 	getoid() (ldap.schema.subentry.SubSchema method)

 	graceAuthNsRemaining (ldap.controls.ppolicy.PasswordPolicyControl attribute)

 	gssapi (class in ldap.sasl)

H

 	
 	handle() (ldif.LDIFCopy method)

 	(ldif.LDIFParser method)

 	(ldif.LDIFRecordList method)

 	
 	handle_modify() (ldif.LDIFParser method)

 	(ldif.LDIFRecordList method)

 	htmlHREF() (ldapurl.LDAPUrl method)

I

 	
 	INAPPROPRIATE_AUTH

 	INAPPROPRIATE_MATCHING

 	include_dirs (built-in variable)

 	IndexedDict (class in ldap.asyncsearch)

 	INIT_FD_AVAIL (in module ldap)

 	initialize() (in module ldap)

 	initializeUrl() (ldapurl.LDAPUrl method)

 	
 	INSUFFICIENT_ACCESS

 	INVALID_CREDENTIALS

 	INVALID_DN_SYNTAX

 	INVALID_SYNTAX

 	is_dn() (in module ldap.dn)

 	IS_LEAF

 	isLDAPUrl() (in module ldapurl)

 	items() (ldap.schema.models.Entry method)

K

 	
 	keys() (ldap.schema.models.Entry method)

 	
 	KNOWN_RESPONSE_CONTROLS (in module ldap.controls)

L

 	
 	ldap (module)

 	ldap.asyncsearch (module)

 	ldap.controls (module)

 	ldap.controls.libldap (module)

 	ldap.controls.ppolicy (module)

 	ldap.controls.psearch (module)

 	ldap.controls.readentry (module)

 	ldap.controls.sessiontrack (module)

 	ldap.controls.simple (module)

 	ldap.dn (module)

 	ldap.extop (module)

 	ldap.extop.dds (module)

 	ldap.filter (module)

 	ldap.ldapobject.LDAPObject (class in ldap)

 	ldap.modlist (module)

 	ldap.resiter (module)

 	ldap.sasl (module)

 	ldap.schema (module)

 	ldap.schema.models (module)

 	ldap.schema.subentry (module)

 	ldap.syncrepl (module)

 	ldap_entry() (ldap.schema.subentry.SubSchema method)

 	LDAP_SCOPE_BASE (in module ldapurl)

 	LDAP_SCOPE_ONELEVEL (in module ldapurl)

 	
 	LDAP_SCOPE_SUBTREE (in module ldapurl)

 	ldapadd() (slapdtest.SlapdObject method)

 	LDAPBytesWarning (class in ldap)

 	LDAPControl (class in ldap.controls)

 	ldapdelete() (slapdtest.SlapdObject method)

 	LDAPError

 	ldapmodify() (slapdtest.SlapdObject method)

 	LDAPUrl (class in ldapurl)

 	ldapurl (module)

 	ldapUrlEscape() (in module ldapurl)

 	LDAPUrlExtension (class in ldapurl)

 	LDAPUrlExtensions (class in ldapurl)

 	ldapwhoami() (slapdtest.SlapdObject method)

 	ldif (module)

 	LDIFCopy (class in ldif)

 	LDIFParser (class in ldif)

 	LDIFRecordList (class in ldif)

 	LDIFWriter (class in ldap.asyncsearch)

 	(class in ldif)

 	library_dirs (built-in variable)

 	libs (built-in variable)

 	List (class in ldap.asyncsearch)

 	listall() (ldap.schema.subentry.SubSchema method)

 	LOCAL_ERROR

 	LOOP_DETECT

M

 	
 	ManageDSAITControl (class in ldap.controls.simple)

 	MatchedValuesControl (class in ldap.controls.libldap)

 	MatchingRule (class in ldap.schema.models)

 	MatchingRuleUse (class in ldap.schema.models)

 	modify() (ldap.LDAPObject method)

 	modify_ext() (ldap.LDAPObject method)

 	
 	modify_ext_s() (ldap.LDAPObject method)

 	modify_s() (ldap.LDAPObject method)

 	modifyModlist() (in module ldap.modlist)

 	modrdn() (ldap.LDAPObject method)

 	modrdn_s() (ldap.LDAPObject method)

 	MORE_RESULTS_TO_RETURN

N

 	
 	NameForm (class in ldap.schema.models)

 	NAMING_VIOLATION

 	NO_MEMORY

 	NO_OBJECT_CLASS_MODS

 	NO_RESULTS_RETURNED

 	
 	NO_SUCH_ATTRIBUTE

 	NO_SUCH_OBJECT

 	NOT_ALLOWED_ON_NONLEAF

 	NOT_ALLOWED_ON_RDN

 	NOT_HUMAN_READABLE_LDAP_SYNTAXES (in module ldap.schema.subentry)

 	NOT_SUPPORTED

O

 	
 	OBJECT_CLASS_VIOLATION

 	ObjectClass (class in ldap.schema.models)

 	OctetStringInteger (class in ldap.controls.simple)

 	OPERATIONS_ERROR

 	OPT_API_FEATURE_INFO (in module ldap)

 	OPT_API_INFO (in module ldap)

 	OPT_CLIENT_CONTROLS (in module ldap)

 	OPT_DEBUG_LEVEL (in module ldap)

 	OPT_DEFBASE (in module ldap)

 	OPT_DEREF (in module ldap)

 	OPT_DIAGNOSTIC_MESSAGE (in module ldap)

 	OPT_ERROR_STRING (in module ldap)

 	OPT_HOST_NAME (in module ldap)

 	OPT_MATCHED_DN (in module ldap)

 	OPT_NETWORK_TIMEOUT (in module ldap)

 	OPT_PROTOCOL_VERSION (in module ldap)

 	OPT_REFERRALS (in module ldap)

 	OPT_REFHOPLIMIT (in module ldap)

 	OPT_RESTART (in module ldap)

 	OPT_SERVER_CONTROLS (in module ldap)

 	OPT_SIZELIMIT (in module ldap)

 	OPT_SUCCESS (in module ldap)

 	OPT_TIMELIMIT (in module ldap)

 	OPT_TIMEOUT (in module ldap)

 	OPT_URI (in module ldap)

 	OPT_X_KEEPALIVE_IDLE (in module ldap)

 	OPT_X_KEEPALIVE_INTERVAL (in module ldap)

 	OPT_X_KEEPALIVE_PROBES (in module ldap)

 	OPT_X_SASL_AUTHCID (in module ldap)

 	OPT_X_SASL_AUTHZID (in module ldap)

 	OPT_X_SASL_MECH (in module ldap)

 	OPT_X_SASL_NOCANON (in module ldap)

 	OPT_X_SASL_REALM (in module ldap)

 	OPT_X_SASL_SECPROPS (in module ldap)

 	
 	OPT_X_SASL_SSF (in module ldap)

 	OPT_X_SASL_SSF_EXTERNAL (in module ldap)

 	OPT_X_SASL_SSF_MAX (in module ldap)

 	OPT_X_SASL_SSF_MIN (in module ldap)

 	OPT_X_TLS_ALLOW (in module ldap)

 	OPT_X_TLS_CACERTDIR (in module ldap)

 	OPT_X_TLS_CACERTFILE (in module ldap)

 	OPT_X_TLS_CERTFILE (in module ldap)

 	OPT_X_TLS_CIPHER (in module ldap)

 	OPT_X_TLS_CIPHER_SUITE (in module ldap)

 	OPT_X_TLS_CRL_ALL (in module ldap)

 	OPT_X_TLS_CRL_NONE (in module ldap)

 	OPT_X_TLS_CRL_PEER (in module ldap)

 	OPT_X_TLS_CRLCHECK (in module ldap)

 	OPT_X_TLS_CRLFILE (in module ldap)

 	OPT_X_TLS_DEMAND (in module ldap)

 	OPT_X_TLS_HARD (in module ldap)

 	OPT_X_TLS_KEYFILE (in module ldap)

 	OPT_X_TLS_NEVER (in module ldap)

 	OPT_X_TLS_NEWCTX (in module ldap)

 	OPT_X_TLS_PACKAGE (in module ldap)

 	OPT_X_TLS_PEERCERT (in module ldap)

 	OPT_X_TLS_PROTOCOL_MAX (in module ldap)

 	OPT_X_TLS_PROTOCOL_MIN (in module ldap)

 	OPT_X_TLS_PROTOCOL_SSL3 (in module ldap)

 	OPT_X_TLS_PROTOCOL_TLS1_0 (in module ldap)

 	OPT_X_TLS_PROTOCOL_TLS1_1 (in module ldap)

 	OPT_X_TLS_PROTOCOL_TLS1_2 (in module ldap)

 	OPT_X_TLS_PROTOCOL_TLS1_3 (in module ldap)

 	OPT_X_TLS_RANDOM_FILE (in module ldap)

 	OPT_X_TLS_REQUIRE_CERT (in module ldap)

 	OPT_X_TLS_REQUIRE_SAN (in module ldap)

 	OPT_X_TLS_TRY (in module ldap)

 	OPT_X_TLS_VERSION (in module ldap)

 	OTHER

P

 	
 	PARAM_ERROR

 	parse() (ldif.LDIFParser method)

 	parse_entry_records() (ldif.LDIFParser method)

 	ParseLDIF() (in module ldif)

 	PARTIAL_RESULTS

 	passwd() (ldap.LDAPObject method)

 	passwd_s() (ldap.LDAPObject method)

 	PasswordPolicyControl (class in ldap.controls.ppolicy)

 	PersistentSearchControl (class in ldap.controls.psearch)

 	
 	PersistentSearchControl.PersistentSearchControlValue (class in ldap.controls.psearch)

 	PORT (in module ldap)

 	postProcessing() (ldap.asyncsearch.AsyncSearchHandler method)

 	PostReadControl (class in ldap.controls.readentry)

 	preProcessing() (ldap.asyncsearch.AsyncSearchHandler method)

 	PreReadControl (class in ldap.controls.readentry)

 	processResults() (ldap.asyncsearch.AsyncSearchHandler method)

 	PROTOCOL_ERROR

 	ProxyAuthzControl (class in ldap.controls.simple)

R

 	
 	ReadEntryControl (class in ldap.controls.readentry)

 	ReconnectLDAPObject (class in ldap.ldapobject)

 	RefreshRequest (class in ldap.extop.dds)

 	RefreshRequest.RefreshRequestValue (class in ldap.extop.dds)

 	RefreshResponse (class in ldap.extop.dds)

 	RefreshResponse.RefreshResponseValue (class in ldap.extop.dds)

 	RelaxRulesControl (class in ldap.controls.simple)

 	rename() (ldap.LDAPObject method)

 	rename_s() (ldap.LDAPObject method)

 	RequestControl (class in ldap.controls)

 	RequestControlTuples() (in module ldap.controls)

 	ResponseControl (class in ldap.controls)

 	restart() (slapdtest.SlapdObject method)

 	result() (ldap.LDAPObject method)

 	result2() (ldap.LDAPObject method)

 	result3() (ldap.LDAPObject method)

 	result4() (ldap.LDAPObject method)

 	ResultProcessor (class in ldap.resiter)

 	RESULTS_TOO_LARGE

 	
 RFC

 	RFC 1779

 	RFC 2589

 	RFC 2696

 	RFC 2830

 	RFC 2849

 	RFC 3062

 	RFC 3296

 	RFC 3829, [1]

 	RFC 3876

 	RFC 3909

 	RFC 4370

 	RFC 4422

 	RFC 4512

 	RFC 4513

 	RFC 4514

 	RFC 4515, [1]

 	RFC 4516, [1]

 	RFC 4527

 	RFC 4528

 	RFC 4532

 	RFC 4533

 	RFC 6125

S

 	
 	sasl (class in ldap.sasl)

 	SASL_AVAIL (in module ldap)

 	SASL_BIND_IN_PROGRESS

 	sasl_external_bind_s() (ldap.LDAPObject method)

 	sasl_gssapi_bind_s() (ldap.LDAPObject method)

 	sasl_interactive_bind_s() (ldap.LDAPObject method)

 	sasl_non_interactive_bind_s() (ldap.LDAPObject method)

 	SchemaElement (class in ldap.schema.models)

 	search() (ldap.LDAPObject method)

 	search_ext() (ldap.LDAPObject method)

 	search_ext_s() (ldap.LDAPObject method)

 	search_s() (ldap.LDAPObject method)

 	SEARCH_SCOPE (in module ldapurl)

 	SEARCH_SCOPE_STR (in module ldapurl)

 	search_st() (ldap.LDAPObject method)

 	server_class (slapdtest.SlapdTestCase attribute)

 	SERVER_DOWN

 	SessionTrackingControl (class in ldap.controls.sessiontrack)

 	SessionTrackingControl.SessionIdentifierControlValue (class in ldap.controls.sessiontrack)

 	set_option() (in module ldap)

 	(ldap.LDAPObject method)

 	setup_rundir() (slapdtest.SlapdObject method)

 	setUpClass() (slapdtest.SlapdTestCase class method)

 	simple_bind() (ldap.LDAPObject method)

 	
 	simple_bind_s() (ldap.LDAPObject method)

 	SimpleLDAPObject (class in ldap.ldapobject)

 	SimplePagedResultsControl (class in ldap.controls.libldap)

 	SIZELIMIT_EXCEEDED

 	slapadd() (slapdtest.SlapdObject method)

 	SlapdObject (class in slapdtest)

 	slapdtest (module)

 	SlapdTestCase (class in slapdtest)

 	start() (slapdtest.SlapdObject method)

 	start_tls_s() (ldap.LDAPObject method)

 	startSearch() (ldap.asyncsearch.AsyncSearchHandler method)

 	stop() (slapdtest.SlapdObject method)

 	str2dn() (in module ldap.dn)

 	STRONG_AUTH_NOT_SUPPORTED

 	STRONG_AUTH_REQUIRED

 	SubSchema (class in ldap.schema.subentry)

 	syncrepl_delete() (ldap.syncrepl.SyncreplConsumer method)

 	syncrepl_entry() (ldap.syncrepl.SyncreplConsumer method)

 	syncrepl_get_cookie() (ldap.syncrepl.SyncreplConsumer method)

 	syncrepl_poll() (ldap.syncrepl.SyncreplConsumer method)

 	syncrepl_present() (ldap.syncrepl.SyncreplConsumer method)

 	syncrepl_refreshdone() (ldap.syncrepl.SyncreplConsumer method)

 	syncrepl_search() (ldap.syncrepl.SyncreplConsumer method)

 	syncrepl_set_cookie() (ldap.syncrepl.SyncreplConsumer method)

 	SyncreplConsumer (class in ldap.syncrepl)

T

 	
 	tearDownClass() (slapdtest.SlapdTestCase class method)

 	timeBeforeExpiration (ldap.controls.ppolicy.PasswordPolicyControl attribute)

 	TIMELIMIT_EXCEEDED

 	
 	TIMEOUT

 	TLS_AVAIL (in module ldap)

 	tree() (ldap.schema.subentry.SubSchema method)

 	TYPE_OR_VALUE_EXISTS

U

 	
 	UNAVAILABLE

 	UNAVAILABLE_CRITICAL_EXTENSION

 	unbind() (ldap.LDAPObject method)

 	unbind_ext() (ldap.LDAPObject method)

 	unbind_ext_s() (ldap.LDAPObject method)

 	unbind_s() (ldap.LDAPObject method)

 	
 	UNDEFINED_TYPE

 	unparse() (ldapurl.LDAPUrl method)

 	(ldif.LDIFWriter method)

 	UNWILLING_TO_PERFORM

 	update() (ldap.schema.models.Entry method)

 	urlfetch() (in module ldap.schema.subentry)

 	USER_CANCELLED

V

 	
 	ValueLessRequestControl (class in ldap.controls.simple)

W

 	
 	wait() (slapdtest.SlapdObject method)

 	
 	whoami_s() (ldap.LDAPObject method)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 python-ldap

 		
 Installing python-ldap

 		
 Installing from PyPI

 		
 Pre-built Binaries

 		
 openSUSE Linux

 		
 Debian Linux

 		
 Windows

 		
 FreeBSD

 		
 macOS

 		
 Installing from Source

 		
 Build prerequisites

 		
 Alpine

 		
 CentOS

 		
 Debian

 		
 Fedora

 		
 setup.cfg

 		
 Libraries used

 		
 Example

 		
 Bytes/text management

 		
 Historical note

 		
 python-ldap Reference Documentation

 		
 ldap LDAP library interface module

 		
 Functions

 		
 Constants

 		
 Exceptions

 		
 Warnings

 		
 LDAPObject classes

 		
 Example

 		
 ldap.asyncsearch Stream-processing of large search results

 		
 Classes

 		
 Examples

 		
 ldap.controls High-level access to LDAPv3 extended controls

 		
 Variables

 		
 Classes

 		
 Functions

 		
 Sub-modules

 		
 ldap.dn LDAP Distinguished Name handling

 		
 Examples

 		
 ldap.extop High-level access to LDAPv3 extended operations

 		
 Classes

 		
 ldap.extop.dds Classes for Dynamic Entries extended operations

 		
 ldap.filter LDAP filter handling

 		
 ldap.modlist Generate modify lists

 		
 ldap.resiter Generator for stream-processing of large search results

 		
 Examples

 		
 ldap.schema Handling LDAPv3 schema

 		
 ldap.schema.subentry Processing LDAPv3 subschema subentry

 		
 ldap.schema.models Schema elements

 		
 Examples for ldap.schema

 		
 ldap.syncrepl Implementation of a syncrepl consumer

 		
 Classes

 		
 ldap.sasl SASL Authentication Methods

 		
 Constants

 		
 Classes

 		
 ldif LDIF parser and generator

 		
 Functions

 		
 Classes

 		
 Example

 		
 ldapurl LDAP URL handling

 		
 Constants

 		
 Functions

 		
 Classes

 		
 slapdtest Spawning test instances of OpenLDAP’s slapd server

 		
 Functions

 		
 Classes

 		
 Third-party documentation

 		
 Python LDAP Applications articles by Matt Butcher

 		
 LDAP Programming in Python

 		
 RFC 1823

 		
 LDAPEXT draft

 		
 OpenLDAP

 		
 VSLDAP

 		
 Contributing to python-ldap

 		
 Communication

 		
 Mailing list

 		
 Issues

 		
 Security Contact

 		
 Contributing code

 		
 Additional tests and scripts

 		
 Make targets

 		
 Reference leak tests

 		
 Instructions for core committers

 		
 Instructions for release managers

 		
 python-ldap FAQ

 		
 Project

 		
 Usage

 		
 Installing

 		
 Historic

_static/up-pressed.png

_static/up.png

